180
Views
88
CrossRef citations to date
0
Altmetric
Original Articles

Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles

, , , , , , , & show all
Pages 270-296 | Received 12 Feb 2008, Accepted 14 Aug 2008, Published online: 18 Jan 2017

References

  • d'Almeida, G. A., Koepke, P. and Shenle, E. P. 1991. Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, Hampton, Virginia, USA, 561 pp.
  • Althausen, D., Muller, D., Ansmann, A., Wandinger, U., Hube, H. and co-authors. 2000. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. TechnoL 17, 1469–1482.
  • Anderson, G. P., Clough, S. A., Kneiyzs, F. X., Chetwynd, J. H. and Shettle, E. P. 1986. AFGL Atmospheric constituent profiles (0-120 km). AFGL-TR-86-0110, AFGL (OPI), Hanscom AFB, MA 01736.
  • Ansmann, A., Tesche, M., Knippertz, R, Bierwirth, E., Althausen, D. and co-authors. 2008. Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 61B, 10.1111/j.1600-0889.2008.00384.x.
  • Aralcawa, E. T., Tuminello, P. S., Khara, B. N., Millham, M. E., Authier, S. and co-authors. 1997. Measurement of optical proper-ties of small particles. NASA Ames Research Center, pages Report Number: CONF9706222, DE98001913, ORNL CP95872.
  • Aronson, J. R., Emslie, A. G., Miseo, E. V., Smith, E. M. and Strong, P. E 1983. Optical constants of monoclinic anisotropic crystals: gypsum. Appl. Opt. 22,4093–4098.
  • Ballcanslci, Y., Schulz, M., Claquin, T. and Guibert, S. 2007. Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 7, 81–95.
  • Bass, A. M. and Paur, R. J. 1981. UV absorption cross-sections for ozone: the temperature dependence. J. Photochem. 17, 141.
  • Bedidi, A. and Cervelle, B. 1993. Light scattering by spherical particles with hematite- and goethite-like optical properties. Effect of water impregnation. J. Geophys. Res. 98, 11 941-11 952.
  • Bierwirth, E., Wendisch, M., Ehrlich, A., Heese, B., Tesche, M. and co-authors. 2008. Spectral surface albedo over Morocco and its impact on the radiative forcing of Saharan dust. Tellus 61B, 10.1111/j.1600-0889.2008.00395.x.
  • Bogumil, K., Orphal, J. and Burrows, J. P. 2000. Temperature dependent absorption cross sections of 03, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer. Proceedings of the ERS - Envisat - Symposium. Looking down at our Earth in the New Millennium, Goteburg, Sweden, 2000.
  • Burrows, J. P., Dehn, A., Deters, B., Himmelmann, S., Richter, A. and co-authors. 1998. Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross sections of NO2 in the 231-794 nm range. J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031.
  • Burrows, J. P., Dehn, A., Deters, B., Himmelmann, S., Richter, A. and co-authors. 1999. Atmospheric remote-sensing reference data from GOME: 2. Temperature-dependent absorption cross sections of 03 in the 231-794 nm range. J. Quant. Spectrosc. Radiat. Transfer 61, 509–517.
  • Cantrell, C. A., Davidson, J. A., McDaniel, A. J., Shetter, R. E. and Calvert, J. G. 1990. Temperature-dependent formaldehyde cross sec-tions in the near-ultraviolet spectral region. J. Phys. Chem. 94, 3902–3908.
  • Carlson, T. N. and Benjamin, S. G. 1980. Radiative heating rates for Saharan dust. Am. Meteor Soc. 37, 193–213.
  • Carlson, T. N. and Caverly, R. S. 1977. Radiative characteristics of Saharan dust at solar wavelengths. J. Geophys. Res. 82, 3141–3152.
  • Cattrall, C., Carder, K. L. and Gordon, H. R. 2003. Columnar aerosol single-scattering albedo and phase function retrieved from sky radi-ance over the ocean: measurements of Saharan dust. J. Geophys. Res. 108(D9), 4287, 10.1029/2002JD002497.
  • Collins, D. R., Jonsson, H. H., Seinfeld, J. H., Flagan, R. C., Gassii, S. and co-authors. 2000. In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus 52B, 498–525.
  • Collins, W. D., Lee-Taylor, J. M., Edwards, D. P. and Francis, G. L. 2006. Effects of increased near-infrared absorption by wa-ter vapor on the climate system. J. Geophys. Res. 111, D18109, 10.1029/2005JD006796.
  • Dubovilc, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J. and co-authors. 2002a. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608.
  • Dubovilc, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I. and co-authors. 2002b. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 29 (10), 10.1029/2001GL014506.
  • Dubovilc, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M. and co-authors. 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 111, D11208, 10.1029/2005JD006619.
  • Egan, W. G. and Hilgeman, T. W. 1979. Optical Properties of Inhomo-geneous Materials: Applications to Geology, Astronomy, Chemistry, and Engineering. Academic Press, San Diego, California, 235 pp.
  • Esselborn, M., Wirth, M., Fix, A., Tesche, M. and Ehret, G. 2008a. Air-borne high spectral resolution lidar for measuring aerosol extinction and bacicscatter coefficients. AppL Opt. 47 (3), 346–358.
  • Esselborn, M., Wirth, M., Fix, A., Weinzierl, B., Rasp, K. and co-authors. 2008b. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00394.x.
  • Fallcovich, A. H., Ganor, E., Levin, Z., Formenti, P. and Rudich, Y. 2001. Chemical and mineralogical analysis of individual mineral dust particles. J. Geophys. Res. 106(D16), 18 029-18 036.
  • Fleischmann, O. C., Hartmann, M., Burrows, J. P. and Orphal, J. 2004. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spec-troscopy. J. Photochem. PhotobioL A: Chem. 168, 117–132.
  • Formenti, R, Andreae, M.O. and Lelieveld, J. 2000. Measurements of aerosol optical depth above 3570 m asl in the North Atlantic free troposphere: results from ACE-2. Tellus 52B, 678–693.
  • Fouquart, Y., Bonnel, B., Brogniez, G., Buriez, J. C., Smith, L. and co-authors. 1987. Observations of Saharan aerosols: Results of ECLATS field experiment, Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Clim. AppL Met. 26, 38–52.
  • Freeman, D. E., Yoshino, K., Esmond, J. R. and Parkinson, W. H. 1984. High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172-240 nm. Planet. Space. Sci. 32, 1125–1134.
  • Gillespie, J. B. and Lindberg, J. D. 1992. Ultraviolet and visible imag-inary refractive index of strongly absorbing atmospheric particulate matter. AppL Opt. 31, 2112–2115.
  • Glotch, T. D., Rossman, G. R. and Aharonson, O. 2007. Mid-infrared (5-100 µm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus 192, 10.1016/j.icarus.2007.07.02, 605-622.
  • Grenfell, T. C. and Warren, S. G. 1999. Representation of a non-spherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104 (D24), 31 697-31 709.
  • Grenfell, T. C., Neshyba, S. P. and Warren, S. G. 2005. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates. J. Geophys. Res. 110, D17203, 10.1029/2005JDO05811.
  • Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N. and co-authors. 2003. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res. 108 (D18), 8577, 10.1029/2002JDO02687.
  • Heintzenberg, J. 2008. The SAMUM-1 experiment over Southern Mo-rocco: overview and introduction. Tellus 61B, 10.1111/j.1600-0889.2008.00403.x.
  • Henning, T., Mutschke, H. and Dorschner, J. 1995. Optical proper-ties of oxide dust grains. Astron. Astrophys. Suppl. Ser 112, 143–149.
  • Henning, T. and Mutschke, H. 1997. Low-temperature infrared prop-erties of cosmic dust analogues. Astron. Astrophys. 327, 743–754.
  • Hess, M., Koepke, P. and Schuh, I. 1998. Optical Properties of Aerosols and clouds: the software package OPAC. Bull. Am. Met. Soc. 79 (7), 831–844.
  • von Hoyningen-Huene, W. and Posse, P. 1997. Nonsphericity of aerosol particles and their contribution to radiative forcing. J. QuanL Spec-trosc. RadiaL Transfer 57 (5), 651–668.
  • Hsu, W. P. and Matijevic, E. 1985. Optical properties of monodispersed hematite hydrosols. AppL Opt. 24, 1623–1629.
  • Ivlev, L. S. and Andreev, S. D. 1986. Optical properties of atmospheric aerosols. Gidrometeoizdat, Leningrad (in Russian).
  • Ivlev, L. S. and Popova, S. I. 1972. Optical constants of substances of atmospheric aerosols. Izv. Vys. Uch. Zav. Fiz. 5, 91–97.
  • Jacobson, M. Z. 2000. A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys. Res. Lett. 27 (2), 217–220.
  • Jarzembski, M. A., Norman, M. L., Fuller, K. L., Srivastava, V. and Cutton, D. R. 2003. Complex refractive index of ammonium nitrate in the 2-20 gm spectral range. AppL Opt. 42, 922–930.
  • Kahnert, M. and Kylling, A. 2004. Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spheri-cal or spheroidal model particles. J. Geophys. Res. 109, D09203, 10.1029/2003JDO04318.
  • Kahnert, M. 2004. Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles. J. QuanL Spectrosc. Radiat. Transfer 85, 231–249.
  • Kahnert, M., Nousiainen, T. and Veihelmann, B. 2005. Spherical and spheroidal model particles as an error source in aerosol climate forc-ing and radiance computations: a case study for feldspar aerosols. J. Geophys. Res. 110, D18513, 10.1029/2004JDO05558.
  • Kahnert, M., Nousiainen, T. and Räisdnen, P. 2007. Mie simulations as an error source in mineral dust aerosol radiative forcing calculations. Q. J. R. MeteoroL Soc. 133, 299–307.
  • Kandler, K., Schiitz, L., Deutscher, C., Ebert, M., Hofmann, H. and co-authors. 2008. Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00385.x.
  • Kaufman, Y. J., Tanre, D., Dubovilc, O., Karnieli, A. and Remer, L. A. 2001. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett. 28 (8), 1479-1482.
  • Koven, C. D. and Fung, I. 2006. Inferring dust composi-tion from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. 111, D14205, 10.1029/2005JD006678.
  • Kromminga, H., Orphal, J., Spietz, P., Voigt, S. and Burrows, J. P. 2003. The temperature dependence (213-293 K) of the absorption cross-sections of OCIO in the 340-450 nm region measured by Fourier-transform spectroscopy. J. Photochem. PhotobioL A: Chem. 157, 149–160.
  • Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S. and Gaudichet, A. 2006. Characterization of iron oxids in mineral dust aerosols: implications for light absorption. J. Geophys. Res. 111, D21207, 10.1029/2005JD007016.
  • Levin, Z., Joseph, J. H. and Mekler, Y. 1980. Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data. J. Atmos. Sci. 37, 882–891.
  • Lindberg, J. D. and Laude, L. S. 1974. Measurements of the absorption coefficient of atmospheric dust. AppL Opt. 13, 1923–1927.
  • Lindberg, J. D. 1975. The composition and optical absorption coefficient of atmospheric particulate matter. Optic. Quant. Electron. 7,131–139.
  • Lindberg, J. D. and Gillespie, J. B. 1977. Relationship between particle size and imaginary index in atmospheric dust. AppL Opt. 16(10), 2628–2630.
  • Linke, C., Möhler, O., Veres, A., Mohácsi, A., Bozólci, Z. and co-authors. 2006. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323.
  • Long, L. L., Querry, M. R., Bell, R. J. and Alexander, R. W. 1993. Optical properties of calcite and gypsum in chrystalline and powdered form in the infrared and far-infrared. Infrared Phys. 34, 191–201.
  • Macke, A. and Mishchenko, M. I. 1996. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. AppL Opt. 35, 4291–4296.
  • Markowicz, K. M., Flatau, P. J., Vogelmann, A. M., Quinn, P. K. and Welton, E. J. 2003. Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Q. J. R. MeteoroL Soc. 129, 2927–2947.
  • Marra, A. C., Blanco, A., Fonti, S., Jurewicz, A. and Orofino, V. 2005. Fine hematite particles of Martian interest: absorption spectra and optical constants. J. Phys.: Conference Series 6, 10.1088/1742-6596/6/1/013, 132-138.
  • Mishchenlco, M. I. 1991. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A8, 871–882.
  • Mishchenlco, M. I. 1993. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength. Appl. Opt. 32,4652–4666.
  • Mishchenlco, M. I. and Travis, L. D. 1994a. T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21.
  • Mishchenlco, M. I. and Travis, L. D. 1994b. Light scattering by polydis-persions of randomly oriented spheroids with sizes comparable to a wavelength. AppL Opt. 33, 7206–7225.
  • Mishchenlco, M. I., Travis, L. D. and Mackowslci, D. W. 1996. T-matrix computations of light scattering by nonspherical particles: a review. J. QuanL Spectrosc. RadiaL Transfer 55, 535–575.
  • Mishchenko, M. I., Travis, L. D., Kahn, R. A. and West, R. A. 1997. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geo-phys. Res. 102(D14), 16831–1687.
  • Mishchenko, M. I. and Travis, L. D. 1998. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spec-trosc. Radiat. Transfer 60, 309–324.
  • Mogili, P. K., Yang, K. H., Young, M. A., Kleiber, P. D. and Grassian, V. H. 2007. Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: broadband IR-UV extinction spectra. J. Geophys. Res. 112, D21204, 10.1029/2007JD008890.
  • Molina, L. T. and Molina, M. J. 1986. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 91, 14501–14508.
  • Mooney, T. and Knacke, R. F. 1985. Optical constants of chlorite and serpentine between 2.5 and 50 gm. Icarus 64,493–502.
  • Muller, T., Schladitz, A., Massling, A., Kaaden, N., Wiedensohler, A. and co-authors. 2008. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1. Tellus 61B, 10.1111/j.1600-0889.2008.00399.x.
  • Myhre, G. and Stordal, F. 2001. Global sensitivity experiments of the radiative forcing due to mineral aerosols. J. Geophys. Res. 106(D16), 18 193-18 204.
  • Neshyba, S. R, Grenfell, T. C. and Warren, S. G. 2003. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. J. Geophys. Res. 108(D15), 4448, 10.1029/2002JDO03302.
  • Nicolet, M. 1984. On the molecular scattering in the terrestrial atmo-sphere: an empirical formula for its calculation in the homosphere. Planet. Space Sci. 32, 1467–1468.
  • Nousiainen, T. and Vermeulen, K. 2003. Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations us-ing spheroids. J. Quant. Spectrosc. Radiat. Transfer 79-80, 1031–1042.
  • Nousiainen, T., Kahnert, M. and Veihelmann, B. 2006. Light scattering modeling of feldspar aerosol particles using polyhedral prisms and spheroids. J. Quant. Spectrosc. Radiat. Transfer 101,471–487.
  • Olmo, F. J., Quirantes, A., Lara, V, Lyamani, H. and Alados-Arboledas, L. 2008. Aerosol optical properties assessed by an inversion method using the solar principal plane for non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer 109, 1504–1516.
  • Orphal, J., Fellows, C. E. and Flaud, P.-M. 2003. The visible absorp-tion spectrum of NO3 measured by high-resolution Fourier-transform spectroscopy. J. Geophys. Res. 108(D3), 10.1029/2002JDO02489.
  • Osborne, S. R., Johnson, B. T., Haywood, J. M., Baran, A. J., Harrison, M. A. J. and co-authors. 2008. Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment (DABEX). J. Geophys. Res. 113, DO0CO3, 10.1029/2007JD009551.
  • Otto, S., de Reus, M., Trautmann, T., Thomas, A., Wendisch, M. and co-authors. 2007. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 7,4887–4903.
  • Palmer, K. F. and Williams, D. 1975. Optical constants of sulfuric acid; application to the clouds of Venus? Appl. Opt. 14, 208–219.
  • Patterson, E. M., Gilette, D. A. and Stockton, B. H. 1977. Complex index of refraction between 300 and 700 nm for Saharan aerosols. J. Geophys. Res. 82, 3153–3160.
  • Perrone, M. R., Barnaba, F., de Tomasi, F., Gobbi, G. P. and Tafuro, A. M. 2004. Imaginary refractive-index effects on desert-aerosol extinc-tion versus backscatter relationships at 531 nm: numerical computa-tions and comparison with Raman lidar measurements. Appl. Opt. 43, 5531–5541.
  • Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T. and co-authors. 2008. Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00383.x.
  • Philipp, H. R. 1985. Silicon Dioxide ( 5i02), Type a (Crystalline). In: Handbook of Optical Constants of Solids I, (ed. E. D. Ralik), Academic Press, New York, 719–747.
  • Pilinis, C. and Li, X. 1998. Particle shape and internal inhomo-geneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing. J. Geophys. Res. 103(D4), 3789–3800.
  • Popova, S. I., Tolstykh, T. S. and Vorobev, V. T. 1972. Optical char-acteristics of amorphous quartz in the 1400-200 cm-1 region. Opt. Spectrosc. 33, 444–445.
  • Querry, M. R., Osborne, G., Lies, K., Jordan, R. and Coveney, R. M. jr. 1978. Complex refractive index of limestone in the visible and infrared. Appl. Opt. 17, 353–356.
  • Querry, M. R. 1987. Optical constants of mineral and other materials from millimeter to the UV. Rep. CRDEC-CR-88009, U.S., Aberdeen, MD.
  • Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L and co-authors. 2003. Comparison of size and morphological mea-surements of coarse mode dust particles from Africa. J. Geophys. Res. 108(D19), 8593, 10.1029/2002JD002484.
  • Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V. and Gayet, J.-F. 2006. Light scattering on Chebyshev particles of higher order. Appl. Opt. 45(23), 6030–6037.
  • Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M. and co-authors. 2005. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139–204.
  • Roush, T., Pollack, J. and Orenberg, J. 1991. Derivation of mid-infrared (5-25 gm) optical constants of some silicates and palagonite. Icarus 94, 191–208.
  • Schladitz, A., Muller, T., Kaaden, N., Massling, A., Kandler, K. and co-authors. 2008. In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00397.x.
  • Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Jonsson, H. H. and co-authors. 2000. Clear-sky closure studies of lower tro-pospheric aerosol and water vapor during ACE-2 using airborne sun-photometer, airborne in-situ, space-borne, and ground-based measure-ments. Tellus 52B, 568–593.
  • Schmid, B., Hegg, D. A., Wang, J., Bates, D., Redemann, J. and co-authors. 2003. Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. J. Geophys. Res. 108(D23), 8656, 10.1029/2002JD003361.
  • Schulz, F. M., Stamnes, K. and Stamnes, J. J. 1999. Shape dependence of the optical properties in size-shape distributions of randomly oriented prolate spheroids, including highly elongated shapes. J. Geophys. Res. 104(D8), 9413–9421.
  • Shenle, E. P. and Fenn, R. W. 1979. Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Project 7670, Air Force Geoph. Lab., Massachusetts.
  • Sokolilc, I. N., Andronova, A. and Johnson, T. C. 1993. Complex refrac-tive index of atmospheric dust aerosols. Atmos. Environ. 27A(16), 2495–2502.
  • Sokolilc, I. N. and Toon, O. B. 1999. Incorporation of mineralogi-cal composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. 104 (D8), 9423–9444.
  • Sokolilc, I. N., Winker, D. M., Bergametti, G., Gilette, D. A., Carmichael, G. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geo-phys. Res. 106(D16), 18 015-18 027.
  • Stamnes, K., Tsay, S., Wiscombe, W. and Jayaweera, K. 1988. Numeri-cally stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509.
  • Stamnes, K., Tsay, S.-C., Wiscombe, W. and Laszlo, I. 2000. DISORT, a general-purpose fortran program for discrete-ordinate-method radia-tive transfer in scattering and emitting layered media: documentation of methodology. Tech. Rep., Dept. of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030.
  • Steyer, T. R., Day, K. L. and Huffman, D. R. 1974. Infrared ab-sorption by small amorphous quartz spheres. Appl. Opt. 13, 1586–1590.
  • Tegen, I. and Lacis, A. A. 1996. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101 (D14), 19 237-19 244.
  • Tesche, M., Ansmann, A., Muller, D., Althausen, D., Mattis, I. and co-authors. 2008. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B, 10.1111/j.1600-0889.2008.00390.x.
  • Toon, O.B., Pollack, J. B. and Khare, B. N. 1976. The optical constants of several atmospheric aerosol species: ammonium sulfate, ammonium oxide, and sodium chloride. J. Geophys. Res. 81, 5733–5748.
  • Tropf, W. J. 1998. Calcium Carbonate, Calcite (CaCO3). In: Handbook of Optical Constants of Solids III, (ed. E. D. Ralik), Academic Press, New York, 701–715.
  • Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R. and co-authors. 1998. Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transfer 59, 171–184.
  • Voigt, S., Orphal, J., Bogumil, K. and Burrows, J. P. 2001. The tempera-ture dependence (203-293 K) of the absorption cross sections of 03 in the 230-850 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 143, 1–9.
  • Voigt, S., Orphal, J. and Burrows, J. P. 2002. The temperature- and pressure-dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 149, 1–7.
  • Volten, H., Munoz, O., Rol, E., de Haan, J. F., Vassen, W. and co-authors. 2001. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res. 106 (D15), 17 375–17401.
  • Volz, F. E. 1972. Infrared refractive index of atmospheric aerosol sub-stances. Appl. Opt. 11, 755–759.
  • Volz, F. E. 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Appl. Opt. 12, 564–568.
  • Volz, F. E. 1983. Infrared optical constants of aerosols at some locations. Appl. Opt. 22, 3690–3700.
  • Wang, J., Liu, X., Christopher, S. A., Reid, J. S., Reid, E. and co-authors. 2003. The effect of non-sphericity on geostationary satel-lite retrievals of dust aerosols. Geophys. Res. Lett. 30(4), 2293, 10.1029/2003GL018697.
  • Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K. and co-authors. 2008. Airborne measurements of dust layer properties, parti-cle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00392.x.
  • Wendisch, M. and von Hoyningen-Huene, W. 1994. Possibility of refrac-tive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements. Atmos. Environ. 28(5), 785–792.
  • Wendisch, M., Pilewskie, R, .Thkel, E., Schmidt, S., Pommier, J. and co-authors. 2004. Airborne measurements of areal spectral surface albedo over different sea and land surfaces. J. Geophys. Res. 109, D08203, 10.1029/2003JD004392.
  • Wiegner, M., Gasteiger, J., Kandler, K., Weinzierl, B., Rasp, K. and co-authors. 2008. Numerical simulations of optical properties of Sa-haran dust aerosols with emphasis on lidar applications. Tellus 61B, 10.1111/j.1600-0889.2008.00381.x.
  • Wilmouth, D. M., Hanisco, T. F., Donahue, N. M. and Anderson, J. G. 1999. Fourier transform ultraviolet spectroscopy of the A2113/2 - X2113/2 transition of BrO. J. Phys. Chem. 103, 8935–8945.
  • Xie, Q., Zhang, H., Wan, Y., Zhang, Y. and Qiao, L. 2007. Characteristics of light scattering by smoke particles based on spheroid models. J. Quant. Spectrosc. Radiat. Transfer 107, 72–82.
  • Yang, P. and Liou, K. N. 1996. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 35, 6568–6582.
  • Yang, P., Kattawar, G. W. and Wiscombe, W. J. 2004. Effect of parti-cle asphericity on single-scattering parameters: comparison between Platonic solids and spheres. Appl. Opt. 43 (22), 4427–4435.
  • Yang, P., Feng, Q., Hong, G., Kattawar, G. W., Wiscombe, W. J. and co-authors. 2007. Modeling of the scattering and radiative prop-erties of nonspherical dust-like aerosols. J. Aeros. Sci. 38, 995–1014.
  • Yoshino, K., Freeman, D. E. and Parkinson, W. H. 1984. High resolution absorption cross section measurements of N20 at 295-299 K in the wavelength region 170-222 nm. Planet. Space. Sci. 32, 1219–1222.
  • Zuev, V. E. and Krekov, G. M. 1986. Atmospheric Optical Models. Gidrometeoizdat, Leningrad (in Russian).
  • Zukic, M., Ton, D. G., Spann, J. F. and Ton, M. R. 1990. Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, MgF2, A1203, Hf02, and 5i02 thin films. Appl. Opt. 29, 4284–4292.