861
Views
122
CrossRef citations to date
0
Altmetric
Articles

Pulsed airborne lidar measurements of atmospheric CO2 column absorption

, , , , , , , & show all
Pages 770-783 | Received 29 Dec 2009, Accepted 22 Jul 2010, Published online: 18 Jan 2017

References

  • Aben, I., Hasekamp, O. and Hartmann, W. 2007. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth's atmosphere. J. Quant. Spectrosc. Radiat. Transfer 104, 450-459.
  • Abshire, J. B., Collatz, G. J., Sun, X., Riris, H., Andrews, A. E. and co-authors. 2001. Laser sounder technique for remotely measuring atmospheric CO2 concentrations. EOS, Trans. Am. Geophys. Un. 82 (47), Fall Meet. Suppl., Abstract GC32A-0221. Available from http://www.agu.org/meetings/ fm01/waisfm01.html.
  • Abshire, J. B., Riris, H., Sun, X., Krainak, M., Kawa, S. and co-authors. 2007. Lidar approach for measuring the CO2 concentrations in the tro-posphere from space. In: Proceedings of 2007 Conference on Lasers and Electro-Optics (CLEO-2007. Optical Society of America, Paper CTh115, ISBN: 978-1-55752-834-6.
  • Abshire, J. B., Riris, H., Hasselbrack, W., Allan, G., Weaver, C. and co-authors. 2009a. Airborne measurements of CO2 column absorp-tion using a pulsed wavelength-scanned laser sounder instrument. In: Proceedings of 2009 Conference on Lasers and Electro-Optics (CLEO-2009. Optical Society of America, Paper CFU-2, ISBN: 978-1-55752-869-8.
  • Abshire, J. B., Riris, H., Allan G. R., Weaver, C., Hassel-brack, W. and co-authors. 2009b. Pulsed airborne lidar mea-surements of atmospheric CO2 column absorption and line shapes from 3-13 km altitudes. EOS, Trans. Am. Geophys. Un. 90 (52), Fall Meet. Suppl., Abstract A34C-05. Available from http://www.agu.org/meetings/fm09/waisfm09.html.
  • Allan G. R., Riris, H., Abshire J. B., Sun X., Wilson E. and co-authors. 2008. Laser sounder for active remote sensing mea-surements of CO2 concentrations. In: Proceedings of the 2008 IEEE Aerospace Conference. IEEE, Big Sky, MT. 1534-1540, doi:10.1109/AER0.2008.4526387.
  • Amediek, A., Fix, A., Wirth, M. and Ehret, G. 2008. Development of an OPO system at 1.57 itm for integrated path DIAL measure-ment of atmospheric carbon dioxide. AppL Phys. B 92, 295-302, doi:10.1007/s00340-008-3075-6.
  • Amediek, A., Fix, A., Ehret, G., Caron, J. and Durand, Y. 2009. Air-borne lidar reflectance measurements at 1.57 um in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. Dis-cuss. 2, 1487-1536.
  • Browell, E. V., Dobler, J., Kooi, S., Choi, Y., Harrison, F. and co-authors. 2009. Airborne validation of active CO2 LAS measurements. EOS, Trans. Am. Geophys. Un. 90 (52), Fall Meet. Suppl., Abstract A34C-04. Available from http://www.agu.org/meetings/fm09/waisfm09.html.
  • Caron, J. and Durand, Y., 2009. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2. Appl. Opt. 48, 5413–5422.
  • Dufour E. and Breon, F. M. 2003. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error anal-ysis. AppL Opt. 42, 3595–3609.
  • Durand, Y., Caron, J., Bensi, P., Ingmann, P., Bezy, J. and co-authors. 2009. A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar. In: Proceedings of the 8th International Sympo-sium on Tropospheric Profiling, Delft University of Technology, the Netherlands, ISBN 978-90-6960-233-2.
  • Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A. and co-authors. 2008. Space-borne remote sensing of CO2, Cat, and N20 by inte-grated path differential absorption lidar: a sensitivity analysis. AppL Phys. B 90, 593-608, doi:10.1007/s00340-007-2892-3.
  • ESA A-SCOPE Mission Assessment Report. 2008. Available from http://esamultimedia.esa.int/docs/5P1313-1_ASCOPE.pdf. Accessed December 2009.
  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442-446.
  • Gibert, F., Flamant, P. H., Bruneau, D. and Loth, C. 2006. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. AppL Opt. 45 (18), 4448-4458.
  • Gibert, F., Flamant, P. H. and Cuesta, J. 2008. Vertical 2-um hetero-dyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Ocean. TechnoL 25, 1477-1497, doi:10.1175/2008JTECHA1070.1.
  • Hetch, E. 2000. Optics, second edition. Addison-Wesley, Reading, MA, USA.
  • Kameyama, S., Imaki, M., Hirano, Y., Ueno, S., Kawakami, S. and co-authors. 2009. Development of 1.6 um continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. Opt. Lett. 34(10), 1513-1516.
  • Kuang, Z., Margolis, J., Toon, G., Crisp D. and Yung, Y., 2002. Space-borne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study. Geophys. Res. Let. 29 (15), 1716, doi:10.1029/2001GL014298.
  • Koch, G., Barnes, B. W., Petros, M., Beyon, J. Y., Amzajerdian, F. and co-authors. 2004. Coherent differential absorption lidar measurements of CO2. AppL Opt. 43 (26), 5092-5099.
  • Koch, G. J., Beyon, J. Y., Gibert, E, Barnes, B. W., Ismail, S. and co-authors. 2008. Side-line tunable laser transmitter for dif-ferential absorption lidar measurements of CO2: design and appli-cation to atmospheric measurements. AppL Opt. 47(7), 944-956, doi:10.1364/A0.47.000944.
  • Krainak, MA, Andrews, A. E., Allan, G R., Burr, J. F., Riris, H. and co-authors. 2003. Measurements of atmospheric CO2 over a hor-izontal path using a tunable-diode-laser and erbium-fiber-amplifier at 1572 nm. In: Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference. Tech-nical Digest, Optical Society of America, paper CTuX4, 878-881, ISBN: 1-55752-748-2.
  • Mao, J. and Kawa, S. R. 2004. Sensitivity Study for Space-based Mea-surement of Atmospheric Total Column Carbon Dioxide by Reflected Sunlight. AppL Opt. 43, 914–927.
  • Mao, J., Kama, S R., Abshire, J. B. and Riris, H. 2007. Sensitivity studies for a space-based CO2 laser sounder. EOS, Trans. Am. Geophys. Un. 88 (52). Fall Meet. Suppl., Abstract A13D-1500.
  • Measures, R., 1992. Laser Remote Sensing: Fundamentals and Appli-cations. Krieger Publishing Company, New York.
  • NASA ASCENDS Mission Science Definition and Planning Workshop Report. 2008. Available from: http://cce.nasa.gov/ascends/12-30-08%20ASCENDS_Worlcshop_Report%20cleampdf. Accessed De-cember 2009.
  • NASA-Glenn. 2010. Available from: http://www.grc.nasa.gov/ WWW/AircraftOps/Learjet.html. Accessed December 2009.
  • O'Brien D. M. and Rayner, P. J. 2002. Global observations of carbon budget 2, CO2 concentrations from differential absorption of reflected sunlight in the 1.61 um band of CO2. J. Geophys. Res. 107, 4354, doi:10.1029/2001JDO00617.
  • Phillips, M. W., Ranson, J., Spiers, G. D. and Menzies, R. T. 2004. Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument. In: Proceedings of 2004 Confer-ence on Lasers and Electro-Optics (CLEO-2004, Optical Society of America, Paper CMDD2.
  • Rids, H., Abshire, J., Allan, G., Burris, J., Chen, J. and co-authors. 2007. A laser sounder for measuring atmospheric trace gases from space. Proc. SPIE 6750, 67500U, doi:10.1117/12.737607.
  • Rodgers, C. 2000. Inverse Methods for Atmospheric Soundings, The-ory and Practice. Volume 2, Series on Atmospheric, Oceanic and Planetary Physics, World Scientific, 238.
  • Sakaizawa, D., Nagasawa, C., Nagai, T., Abo, M., Shibata, Y. and co-authors. 2009. Development of a 1.6 itm differential absorption li-dar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile. AppL Opt. 48 (4), 748-757.
  • Stephen, M., Krainak, M., Riris H. and Allan, G. R. 2007. Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter. Opt. Lett. 32 (15), 2073–2076.
  • Stephen, M. A., Mao, J., Abshire, J. B., Kawa, S. R., Sun X. and co-authors. 2008. Oxygen spectroscopy laser sounding instrument for remote sensing of atmospheric pressure. IEEE Aerospace Conf 1-6, doi:10.1109/AER0.2008.4526388.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.
  • Tsai, B.-M. and Gardner, C. S. 1985. Time-resolved speckle effects on the estimation of laser-pulse arrival times. J. Opt. Soc. Am. A 2, 649–656.
  • Uchino, O. and co-authors. 2009. Initial validation of GOSAT standard products. In: Proceedings of the 8th Intemaitonal Carbon Conference, Jena, Germany, September 13-19.
  • United States National Research Council. 2007. Earth science and appli-cations from space: national imperatives for the next decade and be-yond. Available from http://www.nap.edu/. Accessed December 2009.
  • Weitkamp, C. 2005. Lidar: Range Resolved Optical Remote Sensing of the Atmosphere. Springer, Berlin, Heidelberg, New York.
  • Werle, R, Mucke, R. and Slemr, F. 1993. The limits of signal aver-aging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS). AppL Phys. B 57, 131–139.
  • Werle P., Mazzinghi, P., D'Amato, F., De Rosa, M., Maurer, K. and co-authors. 2004. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A 60, 1685–1705.
  • Yokota, T., Oguma, H., Morino, I., Higurashi, A., Aoki, T. and co-authors. 2004. Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. Proc. SPIE. 5652, 182, doi:10.1117/12.578497.