170
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

A new flexible multicomponent model for the study of aerosol dynamics in the marine boundary layer

, , &
Pages 1001-1025 | Received 14 Sep 2010, Accepted 31 May 2011, Published online: 18 Jan 2017

References

  • Asmi, E., Frey, A., Virklcula, A., Ehn, M., Manninen, H. E. and co-authors. 2009. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos. Chem. Phys. Discuss. 9, 27303-27357.
  • Anttila, T. H., Vehkamki, H., Napari, I. and Kulmala, M. 2005. Effect of ammonium bisulfate formation on atmospheric water-sulfuric acid-ammonia nucleation. Boreal Environ. Res. 10, 511–523.
  • Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J. and co-authors. 2009. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos. Chem. Phys. 9, 1253-1262.
  • Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F. Jr. and co-authors. 2004. Summary of Evaluated Kinetic and Photo-chemical Data for Atmospheric Chemistry, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Available at: http://www.iupac-lcinetic.ch.cam.ac.uk. Accessed on 23-March-2011.
  • Bardouki, H., Berresheim, H., Vrekoussis, M., Sciare, J., Kouvaralcis, G. and co-authors. 2003. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete. Atmos. Chem. Phys. 3, 1871–1886.
  • Bazilevslcaya, G. A., Usoskin, I. G., Fliiciciger, E. O., Harrison, R. G., Desorgher, L. and co-authors. 2008. Cosmic ray induced ion produc-tion in the atmosphere. Space Sci. Rev. 137, doi10.1007/s11214-008-9339-y.
  • Bates, T., Kapustin, V, Quinn, R, Covert, D., Coffman, D. and co-authors. 1998. Processes controlling the distribution of aerosol par-ticles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103 (013), 16369-16383.
  • Bigg, E. K., Leck, C. and Nilsson, E. D. 1996. Sudden changes in arctic atmospheric aerosol concentrations during summer and autumn. Tellus 48B, 254–271.
  • Bigg, E. K., Leck, C. and Nilsson, E. D. 2001. Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer - Causes and consequences. J. Geophys. Res. 106 (023), 32 167-32185.
  • Bilde, M., Svenningsson, B., Monster, J., and Rosenorn, T. 2003. Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols. Environ. Sci. TechnoL 37, 1371–1378.
  • Bonsang, B., Rolle, C. and Lambert, G. 1992. Evidence for marine production of isoprene. Geophys. Res. Lett. 19, 1129–1132.
  • Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661.
  • Clarke, A. D, Davis, D., Kapustin, V. N., Eisele, F., Chen, G. and co-authors. 1998. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 282, 89-91.
  • Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P. H. and co-authors. 1996. Aerosol number distribution from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn Tellus 48B, 197-212.
  • Davis, D. D., Chen, G., Kasibhatla, R, Jefferson, A., Tanner, D. and co-authors. 1998. DMS oxidation in the Antarctic marine boundary layer: comparison of model simulations and field observations of DMS, DMSO, DMS02, H2SO4(g), MSA(g), and MSA(p). J. Geophys. Res. 103(D1), 1657-1678.
  • De Bruyn, W. J., Shorter, J. A., Davidovits, R, Worsnop, D. R., Zah-niser, M. S., and co-authors. 1994. Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys., Res. 99, 16,937-16,932.
  • Dhaniyala, S. and Wexler, A. S. 1996. Numerical schemes to model con-densation and evaporation of aerosols. Atmos. Environ. 30, 919–928.
  • EL CID 2003. Evaluation of the Climatic Impact of Dimethyl Sulphide, Final report of the EC 5FP project: evaluation of the Climate Impact of Dimethyl Sulphide (EL CID), Project coordinator Prof. Barnes, I., Contract number: EVK2-CT-1999-00033.
  • Ervens, B., Carlton, A. G., Turpin, B. J., Altieri, K. E., Kreidenweis, S. M., and co-authors. 2008. Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 35, L02816, doi:10.1029/2007GL031828.
  • Ferek, R. J., Hobbs, P. V, Radke, L. F., Herring, J. A., Sturges, W. T. and co-authors. 1995. Dimethyl sulfide in the arctic atmosphere. J. Geophys. Res. 100(D12), 26,093-26,104.
  • Finlayson-Pitts, B. J. and Pitts, J. N.Jr. 1986. Atmospheric Chemistry: Fundamentals and Experimental Techniques. Wiley, Chichester.
  • Fuchs, N. A. 1964. The Mechanics of Aerosols. Pergamon, New York.
  • Fuchs, N. A. and Sutugin, A. G. 1970. Highly Dispersed Aerosols. Ann. Arbor Sci., Ann Arbor, MI.
  • Gantt, B., Meskhidze, N. and Kamykowslci, D. 2009. A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys. 9,4915–4927.
  • Gelbard, F. 1990. Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Sci. TechnoL 12, 399–412.
  • Gelbard, F. and Seinfeld, J. H. 1980. Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 78, 541–556.
  • Gong, S. L., Walmsley, J. L., Barrie, L. A. and Hopper, J. F. 1997. Mechanisms for surface ozone depletion and recovery during the Polar Sunrise. Atmos. Environ. 6 (14), 969–981.
  • Hatakeyama, S., Izumi, K. and Akimoto, H. 1985. Yield of SO2 and for-mation of aerosol in the photo-oxidation of DMS under atmospheric conditions. Atmos. Environ. 19, 83–586.
  • Heintzenberg, J. and Leck, C. 1994. Seasonal variations of the atmo-spheric aerosol near the top of the marine boundary layer over Spits-bergen related to the Arctic sulfur cycle. Tellus 46B, 52–67.
  • Heintzenberg, J., Birmili, W., Wiedensohler, A., Nowak, A. and Tuch, T. 2004. Structure, variability and persistence of the submicrometre marine aerosol. Tellus 56B, 357–367.
  • Heintzenberg, J., Leck, C., Birmili, W., Wehner, B., Tjernström, M. and co-authors. 2006. Aerosol number-size distributions during clear and fog periods in the summer high Arctic 1991, 1996 and 2001. Tellus 58B, 341-359.
  • Hensen, A. and van der Hage, J. C. H. 1994. Parameterization of cosmic radiation at sea level. J. Geophys. Res. 99(D5), 10 693-10 695.
  • Henze, D. K. and Seinfeld, J. H. 2006. Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 33, L09812, doi:10.1029/2006GL025976.
  • Hopkins, J. R., Jones, I. D., Lewis, A. C., McQuaid, J. B. and Sealcins, P. W. 2002. Non-methane hydrocarbons in the Arctic boundary layer. Atmos. Environ. 36, 3217–3229.
  • Hoppel, W. A. 1987. Nucleation in the MSA-water vapor system. Atmos. Environ. 6 (14), 2703–2709.
  • Hoppel, W. A., Frick, G. M., Fitzgerald, J. W. and Larson, R. E. 1994. Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on the aerosol size distribu-tion. J. Geophys. Res. 99, 14 443-14 459.
  • Hörrak, U., Salm, J. and Tammet, H. 1998. Bursts of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13 909-13 915.
  • Hyvärinen, A.-P., Lihavainen, H., Gaman, A., Vairila, L., Ojala, H. and co-authors. 2006. Surface tensions and densities of oxalic, malonic, succinic, maleic, malic, and cis-pinonic acids. J. Chem. Eng. Data 51, 255-260.
  • IPCC 2007. Intergovernmental Panel on Climate Change 2007, Fourth Assessment Report - The physical science basis. Cambridge Univer-sity Press, Cambridge, UK and New York, NY, USA.
  • Jacobson, M. C., Hansson, H.-C., Noone, K. J. and Charlson, R. J. 2000. Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 38, 267–294.
  • Jacobson, M. Z. 1997. Development and application of a new air pol-lution modeling system - II. Aerosol module structure and design. Atmos. Environ. 31, 131–144.
  • Jacobson, M. Z. 2005. Fundamentals of Atmospheric Modeling, Second Edition. Cambridge University Press, Cambridge.
  • Jacobson, M. Z. and Turco, R. P. 1995. Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. TechnoL 22, 73–92.
  • Jaecker-Voirol, A., Mirabel, P. and Reiss, H. 1987. Hydrates in super-saturated binary sulfuric acid-water vapor: a reexamination. J. Chem. Phys. 87,4849–4852.
  • Jefferson, A., Tanner, D. J., Eisele, F. L., Davis, D. D., Chen, G. and co-authors. 1998. OH photochemistry and methane sulfonic acid forma-tion in the coastal Antarctic boundary layer. J. Geophys. Res. 103(D1), 1647-1656.98.
  • Karl, M., Gross, A., Leck, C. and Pirjola, L. 2007. Intercomparison of dimethylsulfide oxidation mechanisms for the marine boundary layer: gaseous and particulate sulfur constituents. J. Geophys. Res. 112, D15304, doi:10.1029/2006JDO07914.
  • Kawamura, K. and Usukura, K. 1993 Distribution of low molecu-lar weight dicarboxylic acids in the north pacific aerosol samples. J. Oceanography 49, 271–283.
  • Kawamura, K., Kasukabe, H. and Barrie, L. A. 1996. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols at polar sunrise. Atm. Environ. 30, 1709–1722.
  • Kerminen, V.-M. and Leck, C. 2001. Sulfur chemistry over the central Arctic Ocean in summer: gas to particle transformation. J. Geophys. Res. 106, 32 087-32 099.
  • Koklcola, H., Korhonen, H., Lehtinen, K. E. J., Malckonen, R., Asmi, A. and co-authors. 2008. SALSA - a Sectional Aerosol module for Large Scale Applications. Atmos. Chem. Phys. 8, 2469-2483.
  • Korhonen, P., Kulmala, M., Laalcsonen, A., Viisanen, Y., McGraw, R. and co-authors. 1999. Ternary nucleation of H2504, NH3, and H20 in the atmosphere. J. Geophys. Res. 104, 26,349-26,353.
  • Korhonen, H., Lehtinen, K. E. J., Pirjola, L., Napari, I., Vehkamäki, H. and co-authors. 2003. Simulation of atmospheric nucleation mode: a comparison of nucleation models and size distribution representations. J. Geophys. Res. 108(D15), 4471, doi:10.1029/2002JD003305.
  • Korhonen, H., Lehtinen, K. E. J., and Kulmala, M. 2004. Multicompo-nent aerosol dynamics model UHMA: model development and vali-dation. Atmos. Chem. Phys. 4, 757–771.
  • Kreidenweis, S. M. and Seinfeld, J. H. 1988a. Nucleation of sulfuric acid-water and methanesulfonic acid-water solution particles: impli-cations for the atmospheric chemistry of organosulfur species. Atm. Environ. 22 (2), 283–296.
  • Kreidenweis, S. M. and Seinfeld, J. H. 1988b. Effect of surface tension of aqueous methanesulfonic acid solutions upon nucleation and growth of aerosol. Atm. Environ. 6 (14), 1499–1500.
  • Kreidenweis, S. M., Penner, J. E., Yin, E. and Seinfeld, J. H. 1991. The effects of dimethylsulfide upon marine aerosol concentrations. Atm. Environ. 6 (14), 2501-2511.
  • Kulmala, M. 2003. How particles nucleate and grow. Science 302, 1000–1001.
  • Kulmala, M. and Laaksonen, A. 1990. Binary nucleation of water-sulfuric acid system: comparison of classical theories with different H2504 saturation vapor pressures. J. Chem. Phys. 93, 696–701.
  • Kulmala, M., Laaksonen, A. and Pirjola, L. 1998. Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res. 103, 8301–8307.
  • Kulmala, M., Pirjola, L. and Mäkelä, J. M. 2000. Stable sulphate clusters as a source of new atmospheric particles. Nature 404, 66–69.
  • Kulmala, M., Vehlcamäki, H., Petäjä, T., Dal Maso, M., Lauri, A. and co-authors. 2004a. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143-176.
  • Kulmala, M., Kerminen, V.-M., Anttila, T., Laaksonen, A. and O'Dowd, D. 2004b. Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 109, D04205, doi:10.1029/2003JDO03961.
  • Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A. 2006. Cluster ac-tivation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos. Chem. Phys. 6, 787–793.
  • Kulmala, M., Riipinen, I., Sipild, M., Manninen, H. E., Petäjä, T. and co-authors. 2007. Toward direct measurement of atmospheric nucleation. Science 318, 89-92.
  • Laalcso, L., Anttila, T., Lehtinen, K. E. J., Aalto, P .P., Kulmala, M. and co-authors. 2004. Kinetic nucleation of ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353-2366.
  • Landgraf, J. and Crutzen, P. J. 1998. An efficient method for online calculations of photolysis and heating rates. J. Atm. Sci. 55, 863–878.
  • Lannefors, H., Heintzenberg, J. and Hansson, H.-C. 1983. A comprehen-sive study of physical and chemical parameters of the Arctic summer aerosol; results from the Swedish expedition Ymer-80. Tellus 35B, 40–54.
  • Leck, C. and Persson, C. 1996a. The central Arctic as a source of DMS: seasonal variability in relation to biological activity. Tellus 48B, 156–177.
  • Leck, C. and Persson, C. 1996b. Seasonal and short-term variability in dimethylsulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the Arctic marine boundary layer during summer and autumn. Tellus 48B, 272–299.
  • Leck, C. and Bigg, E. K. 1999. Aerosol production over remote marine areas. - A new route. J. Geophys. Res. 26, 3577–3580.
  • Leck, C. and Bigg, E. K. 2005a. Biogenic particles in the surface micro-layer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus 57B, 305–316.
  • Leck, C. and Bigg, E. K. 2005b. Evolution of the marine aerosol. - A new perspective. Geophys. Res. Lett. 32, L19803, doi:10.101029/2005GL023651.
  • Leck, C. and Bigg, E. K. 2010. New particle formation of marine bio-logical origin. Aerosol Sci. Tech. 6 (14), 570–577.
  • Leck, C., Bigg, E. K., Covert, D. S., Heintzenberg, J., Maenhaut, W., Nilsson, E. D. and Wiedensohler, A. 1996. Overview of the atmo-spheric research program during the International Arctic Ocean Expe-dition 1991 (IAOE-91) and its scientific results. Tellus 48B, 136–155.
  • Leck, C., Nilsson, E. D., Bigg, E. K. and Bäcklin, L. 2001. Atmo-spheric program on the Arctic Ocean Expedition 1996 (AOE-96): an overview of scientific goals, experimental approach, and instruments. J. Geophys. Res. 106(D23), 32 051-32 067.
  • Leck, C., Norman, M., Bigg, E. K. and Hillamo, R. 2002. Chemical composition and sources of the high Arctic aerosol relevant for cloud formation, J. Geophys. Res. 107(D12), doi:10.1029/2001JD001463.
  • Loeb, L. B. 1960. Basic Processes of Gaseous Electronics. Chapter VI. Univ. of Calif. Press, Berkeley.
  • Lohmann, U. and Leck, C. 2005. Importance of submicron surface-active organic aerosols for pristine Arctic clouds. Tellus 57B, 261–268.
  • Lushnikov, A. A. and Kulmala, M. 1998. Dimers in nucleating vapors. Phys. Rev. E 58 (3), 3157–3167.
  • Masclet, P. and Hoyau, V. 1995. Speciation of particulate organic matter in arctic aerosols. J. Aerosol Sci. 26, S437.
  • Mauldin, R. L., Eisele, F. L., Tanner, D. J., Kosciuch, E., Shetter, R. and co-authors. 2001. Measurements of OH, H2504, and MSA at the South Pole during ISCAT. Geophys. Res. Lett. 28, 3629-3632.
  • McGrath, R. 1989. Trajectory models and their use in the Irish Meteo-rological Service. Memo. 112/89. Irish Meteorol. Serv., Dublin.
  • Mellouki, A., Jourdain, J. L. and Le Bras, G., 1988. Discharge flow study of the CH3S+NO2 reaction mechanism using Cl+CH3SH as the CH3S source. Chem. Phys. Lett. 148(2,3), 231-236.
  • Merilcanto, J., Napari, I., Vehlcamdlci, H., Anttila, T. and Kulmala, M. 2007. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions. J. Geophys. Res. 112 D15207, doi:10.1029/2006JD007977.
  • Mochida, M., Umemoto, N., Kawamura, K. and Uematsu, M. 2003. Bimodal size distribution of C2-C4 dicarboxylic acids in the marine aerosols. Geophys. Res. Lett. 30 (13), 1672, doi:10.1029/2003GL017451.
  • Meslchidze, N. and Nenes, A. 2006. Phytoplanlcton and cloudiness in the Southern Ocean. Science 317, 1419, doi:10.1126/science.1131779.
  • Modini, R. L., Ristovski, Z. D., Johnson, G. R., He, C., Surawslci, N. and co-authors. 2009. New particle formation and growth at a remote, sub-tropical coastal location. Atmos. Chem. Phys. 9, 7607-7621.
  • Napari, I., Noppel, M., Vehkamdlci, H., and Kulmala, M. 2002a. An improved model for ternary nucleation of sulfuric acid-ammonia-water. J. Chem. Phys. 116, 4221–4227.
  • Napari, I., Noppel, M., Vehlcamdlci, H. and Kulmala, M. 2002b. Param-eterization of ternary nucleation rates for H2504-NH3-H20 vapors. J. Geophys. Res. 107(D19), 4381, doi:10.1029/2002JDO02131.
  • Nguyen, K. and Dabdub, D. 2002. Semi-Lagrangian flux scheme for the solution of the aerosol condensation/evaporation equation. Aerosol Sci. TechnoL 36, 407–418.
  • Nilsson, E. D. and Barr, S. 2001. Effects of synoptic patterns on atmo-spheric chemistry and aerosols during the Arctic Ocean Expedition 1996. J. Geophys. Res. 106, 32 069-32 086.
  • Nilsson, E. D. and Leck, C. 2002. A pseudo-Lagrangian study of the arctic remote marine sulfur cycle. Tellus 54B, 213–230.
  • Noppel, M., Vehlcamdlci, H. and Kulmala, M. 2002. An improved model for hydrate formation in sulfuric acid-water nucleation. J. Chem. Phys. 116, 218–228.
  • O'Dowd, C. D., Davison, B., Lowe, J. A., Smith, M. H., Harrison, R. M., and co-authors. 1997. Biogenic sulphur emissions and inferred sulphate CCN concentrations in and around Antarctica. J. Geophys. Res. 102, 12839-12854.
  • O'Dowd, C. D., Geever, M., Hill, M. K., Smith, M. H. and Jennings, S. G. 1998. New particle formation: nucleation rates and spatial scales in the clean marine coastal environment. Geophys. Res. Lett. 6 (14), 1661–1664.
  • O'Dowd, C. D., McFiggans, G., Creasey, D. J., Pirjola, L., Hoell, C. and co-authors. 1999. On the photochemical production of new particles in the coastal boundary layer. Geophys. Res. Lett. 26 (12), 1707-1710.
  • O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H. and co-authors. 2002. Marine aerosol formation from biogenic iodine emissions. Nature 417, 632-636, doi:10.1038/nature00775.
  • Paatero, J., Vaattovaara, P., Vestenius, M., Meinander, O., Malckonen, U. and co-authors. 2009. Finnish contribution to the Arctic Summer Cloud Ocean Study (ASCOS) expedition, Arctic Ocean 2008. Geo-physica 45(1-2), 119-146.
  • Palmer, P. I. and Shaw, S. L. 2005. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys. Res. Lett. 32, L09805, doi:10.1029/2005GL022592.
  • Pechtl, S., Lovejoy, E. R., Burkholder, J. B. and von Glasow, R. 2006. Modeling the possible role of iodine oxides in atmospheric new par-ticle formation. Atmos. Chem. Phys. 6, 505–523.
  • Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J. and co-authors. 2001. Aerosols, their direct and indirect effects. In: Climate Change 2001: The Scientific Basis, Working Group I contribution to the IPCC Third Assessment report: Summary for policymakers, 289-348.
  • Pirjola, L. 1999. Effects of the increased UV radiation and biogenic VOC emissions on ultrafine sulphate aerosol formation. J. Aerosol Sci. 30, 355–367.
  • Pirjola, L. and Kulmala, M. 2000. Aerosol dynamical model MULTI-MONO. Boreal Environ. Res. 5, 361–374.
  • Pirjola, L. and Kulmala, M. 2001. Development of particle size and composition distributions with a novel aerosol dynamics model. Tellus 53B, 491–509.
  • Pirjola, L., Laalcsonen, A., Aalto, P. and Kulmala, M. 1998. Sulphate aerosol formation in the Arctic boundary layer. J. Geophys. Res. 103, 8309–8322.
  • Pirjola, L., Kulmala, M., Wilck, M., Bischoff, A., Stratmann, E and co-authors. 1999a. Effects of aerosol dynamics on the formation of sulphuric acid aerosols and cloud condensation nuclei. J. Aerosol Sci. 30, 1079-1094.
  • Pirjola, L., Boy, M., Kulmala, M. and Kerminen, V.-M. 1999b. Inter-action between SO2 and submicron atmospheric aerosols. J. Aerosol Sci. 30(Suppl. 1), 249-250.
  • Pirjola, L., O'Dowd, C. D. and Kulmala, M. 2002. A model prediction of the yield of cloud condensation nuclei from coastal nucleation events. J. Geophys. Res. 107 (019), 8098, doi:10.1029/2000JD000213.
  • Pirjola, L., Tsyro, S., Tarrason, L. and Kulmala, M. 2003. A monodis-perse aerosol dynamics module, a promising candidate for use in long-range transport models: box model tests. J. Geophys. Res. 108, D9, 4258, doi:10.1029/2002JD002867.
  • Pirjola, L., Lehtinen, K. E. J., Hansson, H.-C. and Kulmala, M. 2004. How important is nucleation in regional/global modelling?. Geophys. Res. Lett. 31, L12109, doi:10.1029/2004GL019525.
  • Pirjola, L., O'Dowd, C. D., Yoon, Y. J. and Sellegri, K. 2005. Modelling iodine particle formation and growth from seaweed in a chamber. Environ. Chem. 2, 271–281, doi:10.1071/EN05075.
  • Pruppacher, H. R. and Klett, J. D. 1978. Microphysics of clouds and precipitation. D. Reidel, Norwell, MA.
  • Raes, F. 1995. Entrainment of free tropospheric aerosols as a regulat-ing mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 100, 2893–2903.
  • Raes, F., Janssens, A., and van Dingenen, R. 1986. The role of ion-induced aerosol formation in the lower atmosphere. J. Aerosol. Sci. 17,466–470, doi:10.1016/0021-8502(86)90135-7.
  • Raes, F., van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.-P. and co-authors. 2000. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34, 4215-4240.
  • Reiter, R. 1992. Phenomena in Atmospheric and Environmental Elec-tricity. Elsevier, New York.
  • Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M. and co-authors. 2007. Connections between atmospheric sulphuric acid and new particle formation during QUEST DI-IV campaigns in Heidelberg and Hyytiälä. Atmos. Chem. Phys. 7, 1899–1914.
  • Roecicner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M. and co-authors. 2003. The atmospheric general circulation model ECHAM5. Part I: Model description, MPI-Report, 127 pp.
  • Saiz-Lopez, A., Plane, J. M. C., McFiggans, G., Williams, P. J., Ball, S. M. and co-authors. 2006. Modelling molecular iodine emissions in a coastal environment: the link to new particle formation. Atmos. Chem. Phys. 6, 883-895.
  • Saltelli, A. and Hjorth, J., 1995. Uncertainty and sensitivity analyses of OH-initiated dimethyl sulphide (DMS) oxidation kinetics. J. Atmos. Chem. 21, 187–221.
  • Sander, R. and Crutzen, P. J. 1996. Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res. 101, 9121–9138.
  • Sander, R., Kerkweg, A., Rickel, P. and Lelieveld, J. 2005. Tech-nical note: the new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 5,445–450.
  • Sander, S. P., Friedl, R. R., Ravishanlcara, A. R., Golden, D. M., Kolb, C. E. and co-authors. 2003. Chemical Kinetics and Photochemical Data for Use in Atmospheric studies, Evaluation No. 14, JPL Publication 02-25.
  • Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R. and co-authors. 1997. Benchmarking stiff ODE solvers for atmo-spheric chemistry problems II. Rosenbrock solvers. Atmos. Environ. 31,43459-3472.
  • Schack Jr., C. J., Pratsinis, S. E. and Friedlander, S. K. 1986. A gen-eral correlation for deposition of suspended particles from turbu-lent gases to completely rough surfaces. Atmos. Environ. 19, 953-960.
  • Schwartz, S. E. 1986. Mass transport considerations pertinent to aque-ous phase reactions of gases in liquid water clouds. In: Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. 6, (ed.W. Jaeschke), Springer, Berlin, 415-471.
  • Shaw, G. E. 1989. Production of condensation nuclei in clean air by nucleation of H2504. Atmos. Environ. 23, 2841–2846.
  • Shaw, S. L., Chisholm, S. W., and Prinn, R. G. 2003. Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplanlc-ton. Mar Chem. 80, 227–245.
  • Simpson, D. 1992. Long-period modelling of photochemical oxidants in Europe. Model calculation for July 1985. Atmos. Environ. 26A, 1609–1634.
  • Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S. 1997. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 102, 25 847-25 879.
  • Strom, J., Engvall, A.-C., Delbart, F., Krejci, R.,and Treffeisen, R. 2009. On small particles in the Arctic summer boundary layer: obser-vations at two different heights near Ny-lesund, Svalbard. Taus 62B, doi:10.1111/j.1600-0889.2008.00412.x.
  • Tang, I. N. and Munkelwitz, H. R. 1994. Water activities, densi-ties, and refractive indices of aqueous sulphates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18 801-18 808.
  • Tilgner, A., Wolke, R.,and Herrmann, H. 2008. CAPRAM modeling of the physicochemical cloud processing of tropospheric aerosols, in Environmental simulation chambers. Application to atmospheric chemical processes. In: Proceedings of the NATO Advanced Research Workshop on Simulation and Assessment of Chemical Processes in a Multiphase Environment Alushta, Ukraine I September 2007, (eds.Barnes, I. and Kharytonov, M.) Springer, Berlin, Heidelberg, New York, 540.
  • Tsang, T. H. and Rao, A. 1988. Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. TechnoL 9, 271–277.
  • Twomey, S. A. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256.
  • Van Dingenen, R. and Raes, F. 1993. Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour. J. Aerosol Sci. 6 (14), 1–17.
  • Vehlcarriáki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C. and co-authors. 2002. An improved parameterization for sulphuric acid-water nucleation rates for tropospheric and stratospheric condi-tions. J. Geophys. Res. 107(D22), 4622, doi:10.1029/2002JD002184.
  • Virkkula, A., Hirsikko, A., Vana, M., Aalto, P. P., Hillamo, R. and co-authors. 2007. Charged particle size distributions and analysis of particle formation events at the Finnish Antarctic research station Aboa. Boreal Environ. Res. 12, 397-408.
  • Vuollekoski, H., Kerminen, V.-M., Anttila, T., Sihto, S.-L., Vana, M. and co-authors. 2009. Iodine dioxide nucleation simulations in coastal and remote marine environments. J. Geophys. Res. 114, D02206, doi:10.1029/2008JD010713.
  • Weber, R. J., McMurry, P. H., Eisele, F. L. and Tanner, D. J. 1995. Measurement of expected nucleation precursor species and 3-500 nm diameter particles at Mauna Loa Observatory, Hawaii. J. Atmos. Sci. 52 (12), 2242–2257.
  • Weber, R. J., McMurry, P. H., Mauldin, L., Tanner, D. J., Eisele, F. L. and co-authors. 1998. A study of new particle formation and growth involving biogenic trace gas species measured during ACE 1. J. Geo-phys. Res. 103(D13), 16,385-16,396.
  • Wiedensohler, A., Covert, D. A., Swietlicky, E. S., Aalto, P., and Heintzenberg, J. 1996. Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during the Arctic summer. Tellus 48B, 213–222.
  • Wyslouzil, B. E., Seinfeld, J. H., Flagan, R. C. and Okuyama, K. 1991a. Binary nucleation in acid-water systems. Part 1: methanesulfonic acid-water. J. Chem. Phys. 6 (14), 6827–6841.
  • Wyslouzil, B. E., Seinfeld, J. H., Flagan, R. C. and Okuyama, K. 199 lb. Binary nucleation in acid-water systems. Part 2: sulfuric acid-water and a comparison with methanesulfonic acid-water. J. Chem. Phys. 6 (14), 6842-6850.
  • Yassaa, N., Peeken, I., Miner, E., Bluhm, K., Arnold, S. and co-authors. 2008. Evidence for marine production of monoterpenes. Environ. Chem. 5, 391-401, doi:10.1071/EN08047.
  • Yu, E 2006. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model. Atmos. Chem. Phys. 6,5193–5211.
  • Yu, E. and Turco, R. P. 2000. Ultrafine aerosol formation via ion-mediated nucleation. Geophys. Res. Lett. 6 (14), 883–886.
  • Yu, F. and Turco, R. P. 2001. From molecular clusters to nanoparti-des: Role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106(D5), 4797–4814.
  • Zhang, K. M. and Wexler, A. S. 2002. A hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res. 107(D21), 4577, doi:10.1029/2002JD002180.
  • Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C. and co-authors. 2004. Atmospheric new particle formation enhanced by organic acids. Science 304, 1487-1490.