30
Views
36
CrossRef citations to date
0
Altmetric
Article

Role of the GATA-1/FOG-1/NuRD Pathway in the Expression of Human β-Like Globin Genes

&
Pages 3460-3470 | Received 02 Jan 2010, Accepted 26 Apr 2010, Published online: 20 Mar 2023

REFERENCES

  • Asano, H., X. S. Li, and G. Stamatoyannopoulos. 2000. FKLF-2: a novel Kruppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95:3578–3584.
  • Asano, H., X. S. Li, and G. Stamatoyannopoulos. 1999. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol. Cell. Biol. 19:3571–3579.
  • Basu, P., P. E. Morris, J. L. Haar, M. A. Wani, J. B. Lingrel, K. M. Gaensler, and J. A. Lloyd. 2005. KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo. Blood 106:2566–2571.
  • Bauchwitz, R., and F. Costantini. 2000. Developmentally distinct effects on human epsilon-, gamma- and delta-globin levels caused by the absence or altered position of the human beta-globin gene in YAC transgenic mice. Hum. Mol. Genet. 9:561–574.
  • Chakalova, L., D. Carter, E. Debrand, B. Goyenechea, A. Horton, J. Miles, C. Osborne, and P. Fraser. 2005. Developmental regulation of the beta-globin gene locus. Prog. Mol. Subcell. Biol. 38:183–206.
  • Chen, Z., H. Y. Luo, R. K. Basran, T. H. Hsu, D. W. Mang, L. Nuntakarn, C. G. Rosenfield, G. P. Patrinos, R. C. Hardison, M. H. Steinberg, and D. H. Chui. 2008. A T-to-G transversion at nucleotide −567 upstream of HBG2 in a GATA-1 binding motif is associated with elevated hemoglobin F. Mol. Cell. Biol. 28:4386–4393.
  • Chen, Z., H. Y. Luo, M. H. Steinberg, and D. H. Chui. 2009. BCL11A represses HBG transcription in K562 cells. Blood Cells Mol. Dis. 42:144–149.
  • Ciovacco, W. A., W. H. Raskind, and M. A. Kacena. 2008. Human phenotypes associated with GATA-1 mutations. Gene 427:1–6.
  • Crispino, J. D., M. B. Lodish, J. P. MacKay, and S. H. Orkin. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3:219–228.
  • Deconinck, A. E., P. E. Mead, S. G. Tevosian, J. D. Crispino, S. G. Katz, L. I. Zon, and S. H. Orkin. 2000. FOG acts as a repressor of red blood cell development in Xenopus. Development 127:2031–2040.
  • Donze, D., T. M. Townes, and J. J. Bieker. 1995. Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J. Biol. Chem. 270:1955–1959.
  • Ferreira, R., K. Ohneda, M. Yamamoto, and S. Philipsen. 2005. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 25:1215–1227.
  • Fox, A. H., C. Liew, M. Holmes, K. Kowalski, J. Mackay, and M. Crossley. 1999. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18:2812–2822.
  • Gaensler, K. M., M. Kitamura, and Y. W. Kan. 1993. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 90:11381–11385.
  • Garriga-Canut, M., and S. H. Orkin. 2004. Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem. 279:23597–23605.
  • Grass, J. A., M. E. Boyer, S. Pal, J. Wu, M. J. Weiss, and E. H. Bresnick. 2003. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. U. S. A. 100:8811–8816.
  • Harju-Baker, S., F. C. Costa, H. Fedosyuk, R. Neades, and K. R. Peterson. 2008. Silencing of Aγ-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the −566 GATA site. Mol. Cell. Biol. 28:3101–3113.
  • Hong, W., M. Nakazawa, Y. Y. Chen, R. Kori, C. R. Vakoc, C. Rakowski, and G. A. Blobel. 2005. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24:2367–2378.
  • Isern, J., S. T. Fraser, Z. He, and M. H. Baron. 2008. The fetal liver is a niche for maturation of primitive erythroid cells. Proc. Natl. Acad. Sci. U. S. A. 105:6662–6667.
  • Jane, S. M., P. A. Ney, E. F. Vanin, D. L. Gumucio, and A. W. Nienhuis. 1992. Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta-promoter. EMBO J. 11:2961–2969.
  • Jane, S. M., A. W. Nienhuis, and J. M. Cunningham. 1995. Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J. 14:97–105.
  • Katz, S. G., A. B. Cantor, and S. H. Orkin. 2002. Interaction between FOG-1 and the corepressor C-terminal binding protein is dispensable for normal erythropoiesis in vivo. Mol. Cell. Biol. 22:3121–3128.
  • Letting, D. L., Y. Y. Chen, C. Rakowski, S. Reedy, and G. A. Blobel. 2004. Context-dependent regulation of GATA-1 by friend of GATA-1. Proc. Natl. Acad. Sci. U. S. A. 101:476–481.
  • Lettre, G., V. G. Sankaran, M. A. Bezerra, A. S. Araujo, M. Uda, S. Sanna, A. Cao, D. Schlessinger, F. F. Costa, J. N. Hirschhorn, and S. H. Orkin. 2008. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. U. S. A. 105:11869–11874.
  • McGrath, K. E., P. D. Kingsley, A. D. Koniski, R. L. Porter, T. P. Bushnell, and J. Palis. 2008. Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111:2409–2417.
  • Menzel, S., C. Garner, I. Gut, F. Matsuda, M. Yamaguchi, S. Heath, M. Foglio, D. Zelenika, A. Boland, H. Rooks, S. Best, T. D. Spector, M. Farrall, M. Lathrop, and S. L. Thein. 2007. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39:1197–1199.
  • Miccio, A., R. Cesari, F. Lotti, C. Rossi, F. Sanvito, M. Ponzoni, S. J. Routledge, C. M. Chow, M. N. Antoniou, and G. Ferrari. 2008. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 105:10547–10552.
  • Miccio, A., Y. Wang, W. Hong, G. D. Gregory, H. Wang, X. Yu, J. K. Choi, S. Shelat, W. Tong, M. Poncz, and G. A. Blobel. 2010. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J. 29:442–456.
  • Munugalavadla, V., L. C. Dore, B. L. Tan, L. Hong, M. Vishnu, M. J. Weiss, and R. Kapur. 2005. Repression of c-Kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol. Cell. Biol. 25:6747–6759.
  • Nichols, K. E., J. D. Crispino, M. Poncz, J. G. White, S. H. Orkin, J. M. Maris, and M. J. Weiss. 2000. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat. Genet. 24:266–270.
  • Porcu, S., M. Kitamura, E. Witkowska, Z. Zhang, A. Mutero, C. Lin, J. Chang, and K. M. Gaensler. 1997. The human beta globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90:4602–4609.
  • Raich, N., C. H. Clegg, J. Grofti, P. H. Romeo, and G. Stamatoyannopoulos. 1995. GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J. 14:801–809.
  • Sankaran, V. G., T. F. Menne, J. Xu, T. E. Akie, G. Lettre, B. Van Handel, H. K. Mikkola, J. N. Hirschhorn, A. B. Cantor, and S. H. Orkin. 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842.
  • Sankaran, V. G., J. Xu, T. Ragoczy, G. C. Ippolito, C. R. Walkley, S. D. Maika, Y. Fujiwara, M. Ito, M. Groudine, M. A. Bender, P. W. Tucker, and S. H. Orkin. 2009. Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097.
  • Socolovsky, M., H. Nam, M. D. Fleming, V. H. Haase, C. Brugnara, and H. F. Lodish. 2001. Ineffective erythropoiesis in Stat5a−/− 5b−/− mice due to decreased survival of early erythroblasts. Blood 98:3261–3273.
  • Stamatoyannopoulos, G. 2005. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33:259–271.
  • Tanabe, O., F. Katsuoka, A. D. Campbell, W. Song, M. Yamamoto, K. Tanimoto, and J. D. Engel. 2002. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J. 21:3434–3442.
  • Tanabe, O., D. McPhee, S. Kobayashi, Y. Shen, W. Brandt, X. Jiang, A. D. Campbell, Y. T. Chen, C. Chang, M. Yamamoto, K. Tanimoto, and J. D. Engel. 2007. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J. 26:2295–2306.
  • Tripic, T., W. Deng, Y. Cheng, Y. Zhang, C. R. Vakoc, G. D. Gregory, R. C. Hardison, and G. A. Blobel. 2009. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 113:2191–2201.
  • Tsang, A. P., J. E. Visvader, C. A. Turner, Y. Fujiwara, C. Yu, M. J. Weiss, M. Crossley, and S. H. Orkin. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119.
  • Uda, M., R. Galanello, S. Sanna, G. Lettre, V. G. Sankaran, W. Chen, G. Usala, F. Busonero, A. Maschio, G. Albai, M. G. Piras, N. Sestu, S. Lai, M. Dei, A. Mulas, L. Crisponi, S. Naitza, I. Asunis, M. Deiana, R. Nagaraja, L. Perseu, S. Satta, M. D. Cipollina, C. Sollaino, P. Moi, J. N. Hirschhorn, S. H. Orkin, G. R. Abecasis, D. Schlessinger, and A. Cao. 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 105:1620–1625.
  • Wang, X., J. D. Crispino, D. L. Letting, M. Nakazawa, M. Poncz, and G. A. Blobel. 2002. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J. 21:5225–5234.
  • Welch, J. J., J. A. Watts, C. R. Vakoc, Y. Yao, H. Wang, R. C. Hardison, G. A. Blobel, L. A. Chodosh, and M. J. Weiss. 2004. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104:3136–3147.
  • Zhou, W., D. R. Clouston, X. Wang, L. Cerruti, J. M. Cunningham, and S. M. Jane. 2000. Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Mol. Cell. Biol. 20:7662–7672.
  • Zhou, W., Q. Zhao, R. Sutton, H. Cumming, X. Wang, L. Cerruti, M. Hall, R. Wu, J. M. Cunningham, and S. M. Jane. 2004. The role of p22 NF-E4 in human globin gene switching. J. Biol. Chem. 279:26227–26232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.