159
Views
5
CrossRef citations to date
0
Altmetric
Minireview

Reduce, Retain, Recycle: Mechanisms for Promoting Histone Protein Degradation versus Stability and Retention

& ORCID Icon
Article: e00007-21 | Published online: 03 Mar 2023

REFERENCES

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. https://doi.org/10.1038/38444.
  • Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA, Greenblatt JF, Reinberg D. 2010. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17:1343–1351. https://doi.org/10.1038/nsmb.1911.
  • Campos EI, Smits AH, Kang YH, Landry S, Escobar TM, Nayak S, Ueberheide BM, Durocher D, Vermeulen M, Hurwitz J, Reinberg D. 2015. Analysis of the histone H3.1 interactome: a suitable chaperone for the right event. Mol Cell 60:697–709. https://doi.org/10.1016/j.molcel.2015.08.005.
  • Jeronimo C, Poitras C, Robert F. 2019. Histone recycling by FACT and Spt6 during transcription prevents the scrambling of histone modifications. Cell Rep 28:1206–1218. https://doi.org/10.1016/j.celrep.2019.06.097.
  • Torne J, Ray-Gallet D, Boyarchuk E, Garnier M, Le Baccon P, Coulon A, Orsi GA, Almouzni G. 2020. Two HIRA-dependent pathways mediate H3.3 de novo deposition and recycling during transcription. Nat Struct Mol Biol 27:1057–1068. https://doi.org/10.1038/s41594-020-0492-7.
  • Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A, Andersson R, Groth A. 2018. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361:1389–1392. https://doi.org/10.1126/science.aau0294.
  • Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S, Sharma S, Johansson E, Chabes A, Xu RM, Zhang Z. 2018. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361:1386–1389. https://doi.org/10.1126/science.aat8849.
  • Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C, Zhang Z. 2018. The Mcm2-Ctf4-Polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol Cell 72:140–151. https://doi.org/10.1016/j.molcel.2018.09.001.
  • Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G. 2011. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell 44:918–927. https://doi.org/10.1016/j.molcel.2011.11.021.
  • Foltz DR, Jansen LE, Bailey AO, Yates JR, III, Bassett EA, Wood S, Black BE, Cleveland DW. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484. https://doi.org/10.1016/j.cell.2009.02.039.
  • Alvarez F, Munoz F, Schilcher P, Imhof A, Almouzni G, Loyola A. 2011. Sequential establishment of marks on soluble histones H3 and H4. J Biol Chem 286:17714–17721. https://doi.org/10.1074/jbc.M111.223453.
  • Apta-Smith MJ, Hernandez-Fernaud JR, Bowman AJ. 2018. Evidence for the nuclear import of histones H3.1 and H4 as monomers. EMBO J 37:e98714. https://doi.org/10.15252/embj.201798714.
  • Donham DC, Jr, Scorgie JK, Churchill ME. 2011. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Res 39:5449–5458. https://doi.org/10.1093/nar/gkr097.
  • English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK. 2006. Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508. https://doi.org/10.1016/j.cell.2006.08.047.
  • English CM, Maluf NK, Tripet B, Churchill ME, Tyler JK. 2005. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44:13673–13682. https://doi.org/10.1021/bi051333h.
  • Liu WH, Roemer SC, Port AM, Churchill ME. 2012. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res 40:11229–11239. https://doi.org/10.1093/nar/gks906.
  • Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T. 2007. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446:338–341. https://doi.org/10.1038/nature05613.
  • Sanematsu F, Takami Y, Barman HK, Fukagawa T, Ono T, Shibahara K, Nakayama T. 2006. Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J Biol Chem 281:13817–13827. https://doi.org/10.1074/jbc.M511590200.
  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61. https://doi.org/10.1016/s0092-8674(03)01064-x.
  • Fromental-Ramain C, Ramain P, Hamiche A. 2017. The Drosophila DAXX-like protein (DLP) cooperates with ASF1 for H3.3 deposition and heterochromatin formation. Mol Cell Biol 37:e00597-16. https://doi.org/10.1128/MCB.00597-16.
  • Horard B, Sapey-Triomphe L, Bonnefoy E, Loppin B. 2018. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization. Epigenetics Chromatin 11:19. https://doi.org/10.1186/s13072-018-0189-x.
  • Elsasser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. 2012. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491:560–565. https://doi.org/10.1038/nature11608.
  • Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G. 2009. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497. https://doi.org/10.1016/j.cell.2009.02.040.
  • Shuaib M, Ouararhni K, Dimitrov S, Hamiche A. 2010. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci U S A 107:1349–1354. https://doi.org/10.1073/pnas.0913709107.
  • Zasadzińska E, Barnhart-Dailey MC, Kuich PHJL, Foltz DR. 2013. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J 32:2113–2124. https://doi.org/10.1038/emboj.2013.142.
  • Clement C, Almouzni G. 2015. MCM2 binding to histones H3-H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol 22:587–589. https://doi.org/10.1038/nsmb.3067.
  • Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G. 2005. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell 17:301–311. https://doi.org/10.1016/j.molcel.2004.12.018.
  • Richet N, Liu D, Legrand P, Velours C, Corpet A, Gaubert A, Bakail M, Moal-Raisin G, Guerois R, Compper C, Besle A, Guichard B, Almouzni G, Ochsenbein F. 2015. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 43:1905–1917. https://doi.org/10.1093/nar/gkv021.
  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. 2003. FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093. https://doi.org/10.1126/science.1085703.
  • Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM. 2015. Structure and function of histone chaperone FACT. Mol Biol 49:891–904. https://doi.org/10.7868/S0026898415060026.
  • Hsieh FK, Kulaeva OI, Patel SS, Dyer PN, Luger K, Reinberg D, Studitsky VM. 2013. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 110:7654–7659. https://doi.org/10.1073/pnas.1222198110.
  • Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D. 1998. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116. https://doi.org/10.1016/s0092-8674(00)80903-4.
  • Prendergast L, Hong E, Safina A, Poe D, Gurova K. 2020. Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene 39:5124–5137. https://doi.org/10.1038/s41388-020-1346-9.
  • Shibahara K, Stillman B. 1999. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585. https://doi.org/10.1016/s0092-8674(00)80661-3.
  • Zasadzińska E, Huang J, Bailey AO, Guo LY, Lee NS, Srivastava S, Wong KA, French BT, Black BE, Foltz DR. 2018. Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev Cell 47:348–362. https://doi.org/10.1016/j.devcel.2018.09.003.
  • Piha RS, Cuenod M, Waelsch H. 1966. Metabolism of histones of brain and liver. J Biol Chem 241:2397–2404. https://doi.org/10.1016/S0021-9258(18)96633-0.
  • Savas JN, Toyama BH, Xu T, Yates JR, III, Hetzer MW. 2012. Extremely long-lived nuclear pore proteins in the rat brain. Science 335:942. https://doi.org/10.1126/science.1217421.
  • Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, III, Hetzer MW. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–982. https://doi.org/10.1016/j.cell.2013.07.037.
  • Karantza V, Freire E, Moudrianakis EN. 2001. Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains. Biochemistry 40:13114–13123. https://doi.org/10.1021/bi0110140.
  • Duerre JA, Lee CT. 1974. In vivo methylation and turnover of rat brain histones. J Neurochem 23:541–547. https://doi.org/10.1111/j.1471-4159.1974.tb06057.x.
  • Toyama BH, Arrojo EDR, Lev-Ram V, Ramachandra R, Deerinck TJ, Lechene C, Ellisman MH, Hetzer MW. 2019. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J Cell Biol 218:433–444. https://doi.org/10.1083/jcb.201809123.
  • Ahmad K, Henikoff S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200. https://doi.org/10.1016/s1097-2765(02)00542-7.
  • Stroud H, Otero S, Desvoyes B, Ramirez-Parra E, Jacobsen SE, Gutierrez C. 2012. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:5370–5375. https://doi.org/10.1073/pnas.1203145109.
  • Mito Y, Henikoff JG, Henikoff S. 2005. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097. https://doi.org/10.1038/ng1637.
  • Miao F, Natarajan R. 2005. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661. https://doi.org/10.1128/MCB.25.11.4650-4661.2005.
  • Bodor DL, Valente LP, Mata JF, Black BE, Jansen LE. 2013. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol Biol Cell 24:923–932. https://doi.org/10.1091/mbc.E13-01-0034.
  • Smoak EM, Stein P, Schultz RM, Lampson MA, Black BE. 2016. Long-term retention of CENP-A nucleosomes in mammalian oocytes underpins transgenerational inheritance of centromere identity. Curr Biol 26:1110–1116. https://doi.org/10.1016/j.cub.2016.02.061.
  • Swartz SZ, McKay LS, Su KC, Bury L, Padeganeh A, Maddox PS, Knouse KA, Cheeseman IM. 2019. Quiescent cells actively replenish CENP-A nucleosomes to maintain centromere identity and proliferative potential. Dev Cell 51:35–48. https://doi.org/10.1016/j.devcel.2019.07.016.
  • Bowman GD, Poirier MG. 2015. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295. https://doi.org/10.1021/cr500350x.
  • Buschbeck M, Hake SB. 2017. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314. https://doi.org/10.1038/nrm.2016.166.
  • Yadav T, Quivy JP, Almouzni G. 2018. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361:1332–1336. https://doi.org/10.1126/science.aat8950.
  • Filipescu D, Muller S, Almouzni G. 2014. Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annu Rev Cell Dev Biol 30:615–646. https://doi.org/10.1146/annurev-cellbio-100913-013311.
  • Alabert C, Groth A. 2012. Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167. https://doi.org/10.1038/nrm3288.
  • Alabert C, Jasencakova Z, Groth A. 2017. Chromatin replication and histone dynamics. Adv Exp Med Biol 1042:311–333. https://doi.org/10.1007/978-981-10-6955-0_15.
  • Tran V, Lim C, Xie J, Chen X. 2012. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682. https://doi.org/10.1126/science.1226028.
  • Wooten M, Snedeker J, Nizami ZF, Yang X, Ranjan R, Urban E, Kim JM, Gall J, Xiao J, Chen X. 2019. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat Struct Mol Biol 26:732–743. https://doi.org/10.1038/s41594-019-0269-z.
  • Evano B, Khalilian S, Le Carrou G, Almouzni G, Tajbakhsh S. 2020. Dynamics of asymmetric and symmetric divisions of muscle stem cells in vivo and on artificial niches. Cell Rep 30:3195–3206. https://doi.org/10.1016/j.celrep.2020.01.097.
  • Ma B, Trieu TJ, Cheng J, Zhou S, Tang Q, Xie J, Liu JL, Zhao K, Habib SJ, Chen X. 2020. Differential histone distribution patterns in induced asymmetrically dividing mouse embryonic stem cells. Cell Rep 32:108003. https://doi.org/10.1016/j.celrep.2020.108003.
  • Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, Rando OJ, van Leeuwen F. 2011. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol 9:e1001075. https://doi.org/10.1371/journal.pbio.1001075.
  • Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A, Jensen ON, Imhof A, Groth A. 2015. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–590. https://doi.org/10.1101/gad.256354.114.
  • Reveron-Gomez N, Gonzalez-Aguilera C, Stewart-Morgan KR, Petryk N, Flury V, Graziano S, Johansen JV, Jakobsen JS, Alabert C, Groth A. 2018. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol Cell 72:239–249. https://doi.org/10.1016/j.molcel.2018.08.010.
  • Escobar TM, Oksuz O, Saldana-Meyer R, Descostes N, Bonasio R, Reinberg D. 2019. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179:953–963. https://doi.org/10.1016/j.cell.2019.10.009.
  • Gruszka DT, Xie S, Kimura H, Yardimci H. 2020. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci Adv 6:eabc0330. https://doi.org/10.1126/sciadv.abc0330.
  • Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K. 2013. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3:892–904. https://doi.org/10.1016/j.celrep.2013.02.028.
  • Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X, Lees M, Sandelin A, Pasero P, Lopes M, Groth A. 2014. New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol 204:29–43. https://doi.org/10.1083/jcb.201305017.
  • Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G. 2007. Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931. https://doi.org/10.1126/science.1148992.
  • Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, Chen S, Groth A, Patel DJ. 2015. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 22:618–626. https://doi.org/10.1038/nsmb.3055.
  • Hammond CM, Stromme CB, Huang H, Patel DJ, Groth A. 2017. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 18:141–158. https://doi.org/10.1038/nrm.2016.159.
  • Jasencakova Z, Scharf AN, Ask K, Corpet A, Imhof A, Almouzni G, Groth A. 2010. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37:736–743. https://doi.org/10.1016/j.molcel.2010.01.033.
  • Zee BM, Levin RS, DiMaggio PA, Garcia BA. 2010. Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin 3:22. https://doi.org/10.1186/1756-8935-3-22.
  • Tran V, Feng L, Chen X. 2013. Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions. Chromosome Res 21:255–269. https://doi.org/10.1007/s10577-013-9356-x.
  • Commerford SL, Carsten AL, Cronkite EP. 1982. The turnover of tritium in cell nuclei, chromatin, DNA, and histone. Radiat Res 92:521–529. https://doi.org/10.2307/3575924.
  • Deal RB, Henikoff JG, Henikoff S. 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164. https://doi.org/10.1126/science.1186777.
  • Clement C, Orsi GA, Gatto A, Boyarchuk E, Forest A, Hajj B, Mine-Hattab J, Garnier M, Gurard-Levin ZA, Quivy JP, Almouzni G. 2018. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun 9:3181. https://doi.org/10.1038/s41467-018-05697-1.
  • Mills NC, Van NT, Means AR. 1977. Histones of rat testis chromatin during early postnatal development and their interactions with DNA. Biol Reprod 17:760–768. https://doi.org/10.1095/biolreprod17.5.760.
  • Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P. 1998. Nuclear basic proteins in spermiogenesis. Biochimie 80:117–128. https://doi.org/10.1016/s0300-9084(98)80018-7.
  • Hammoud S, Liu L, Carrell DT. 2009. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia 41:88–94. https://doi.org/10.1111/j.1439-0272.2008.00890.x.
  • Torres-Flores U, Hernandez-Hernandez A. 2020. The interplay between replacement and retention of histones in the sperm genome. Front Genet 11:780. https://doi.org/10.3389/fgene.2020.00780.
  • Palmer DK, O'Day K, Margolis RL. 1990. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36. https://doi.org/10.1007/BF00337600.
  • Wang T, Gao H, Li W, Liu C. 2019. Essential role of histone replacement and modifications in male fertility. Front Genet 10:962. https://doi.org/10.3389/fgene.2019.00962.
  • Grimes SR, Jr, Henderson N. 1984. Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res 152:91–97. https://doi.org/10.1016/0014-4827(84)90232-5.
  • Grimes SR, Jr, Henderson N. 1984. Acetylation of rat testis histones H2B and TH2B. Dev Biol 101:516–521. https://doi.org/10.1016/0012-1606(84)90165-9.
  • Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB. 2013. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024. https://doi.org/10.1016/j.cell.2013.04.032.
  • Christensen ME, Rattner JB, Dixon GH. 1984. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res 12:4575–4592. https://doi.org/10.1093/nar/12.11.4575.
  • Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. 2010. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277:599–604. https://doi.org/10.1111/j.1742-4658.2009.07504.x.
  • Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC. 2002. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci U S A 99:8707–8712. https://doi.org/10.1073/pnas.082248899.
  • Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. 1992. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31:170–181. https://doi.org/10.1002/mrd.1080310303.
  • Oliva R, Mezquita C. 1982. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res 10:8049–8059. https://doi.org/10.1093/nar/10.24.8049.
  • Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K. 2014. Histone h4 modification during mouse spermatogenesis. J Reprod Dev 60:383–387. https://doi.org/10.1262/jrd.2014-018.
  • Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. 2010. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18:371–384. https://doi.org/10.1016/j.devcel.2010.01.010.
  • van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P. 2006. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298:458–469. https://doi.org/10.1016/j.ydbio.2006.06.051.
  • Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML. 1998. Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273:13165–13169. https://doi.org/10.1074/jbc.273.21.13165.
  • Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. 1999. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207:322–333. https://doi.org/10.1006/dbio.1998.9155.
  • Guo Y, Song Y, Guo Z, Hu M, Liu B, Duan H, Wang L, Yuan T, Wang D. 2018. Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle 17:162–173. https://doi.org/10.1080/15384101.2017.1361066.
  • Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH. 1996. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810. https://doi.org/10.1016/s0092-8674(00)80154-3.
  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. 2007. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700. https://doi.org/10.1242/jcs.004663.
  • Ustrell V, Hoffman L, Pratt G, Rechsteiner M. 2002. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21:3516–3525. https://doi.org/10.1093/emboj/cdf333.
  • Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M. 2011. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286:42830–42839. https://doi.org/10.1074/jbc.M111.300178.
  • Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D, Matouschek A. 2020. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 11:477. https://doi.org/10.1038/s41467-019-13906-8.
  • Reyes E, Morin V, Schwager S, Puchi M, Bustos P, Imschenetzky M. 2001. Variability of sperm specific histones in sea urchins. Comp Biochem Physiol B Biochem Mol Biol 128:451–457. https://doi.org/10.1016/s1096-4959(00)00344-4.
  • Poccia DL, Simpson MV, Green GR. 1987. Transitions in histone variants during sea urchin spermatogenesis. Dev Biol 121:445–453. https://doi.org/10.1016/0012-1606(87)90181-3.
  • Paoletti RA, Huang RC. 1969. Characterization of sea urchin sperm chromatin and its basic proteins. Biochemistry 8:1615–1625. https://doi.org/10.1021/bi00832a043.
  • Morin V, Sanchez-Rubio A, Aze A, Iribarren C, Fayet C, Desdevises Y, Garcia-Huidobro J, Imschenetzky M, Puchi M, Geneviere AM. 2012. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. PLoS One 7:e46850. https://doi.org/10.1371/journal.pone.0046850.
  • Imschenetzky M, Diaz F, Montecino M, Sierra F, Puchi M. 1997. Identification of a cysteine protease responsible for degradation of sperm histones during male pronucleus remodeling in sea urchins. J Cell Biochem 67:304–315. https://doi.org/10.1002/(SICI)1097-4644(19971201)67:3<304::AID-JCB3>3.0.CO;2-#.
  • Suzuki M, Sugiura M, Ebashi S. 1990. Sea urchin protease specific to the SPKK motif in histone. J Biochem 108:347–355. https://doi.org/10.1093/oxfordjournals.jbchem.a123205.
  • Concha C, Monardes A, Even Y, Morin V, Puchi M, Imschenetzky M, Geneviere AM. 2005. Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos. J Cell Physiol 204:693–703. https://doi.org/10.1002/jcp.20338.
  • Puchi M, Garcia-Huidobro J, Cordova C, Aguilar R, Dufey E, Imschenetzky M, Bustos P, Morin V. 2010. A new nuclear protease with cathepsin L properties is present in HeLa and Caco-2 cells. J Cell Biochem 111:1099–1106. https://doi.org/10.1002/jcb.22712.
  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD. 2008. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294. https://doi.org/10.1016/j.cell.2008.09.055.
  • Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T. 2009. Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16:17–22. https://doi.org/10.1038/nsmb.1534.
  • Morin V, Sanchez A, Quinones K, Huidobro JG, Iribarren C, Bustos P, Puchi M, Geneviere AM, Imschenetzky M. 2008. Cathepsin L inhibitor I blocks mitotic chromosomes decondensation during cleavage cell cycles of sea urchin embryos. J Cell Physiol 216:790–795. https://doi.org/10.1002/jcp.21459.
  • Chari S, Wilky H, Govindan J, Amodeo AA. 2019. Histone concentration regulates the cell cycle and transcription in early development. Development 146:dev177402. https://doi.org/10.1242/dev.177402.
  • Gou LT, Lim DH, Ma W, Aubol BE, Hao Y, Wang X, Zhao J, Liang Z, Shao C, Zhang X, Meng F, Li H, Zhang X, Xu R, Li D, Rosenfeld MG, Mellon PL, Adams JA, Liu MF, Fu XD. 2020. Initiation of parental genome reprogramming in fertilized oocyte by splicing kinase SRPK1-catalyzed protamine phosphorylation. Cell 180:1212–1227. https://doi.org/10.1016/j.cell.2020.02.020.
  • Papoutsopoulou S, Nikolakaki E, Chalepakis G, Kruft V, Chevaillier P, Giannakouros T. 1999. SR protein-specific kinase 1 is highly expressed in testis and phosphorylates protamine 1. Nucleic Acids Res 27:2972–2980. https://doi.org/10.1093/nar/27.14.2972.
  • Perreault SD, Barbee RR, Slott VL. 1988. Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev Biol 125:181–186. https://doi.org/10.1016/0012-1606(88)90070-x.
  • Gold HB, Jung YH, Corces VG. 2018. Not just heads and tails: the complexity of the sperm epigenome. J Biol Chem 293:13815–13820. https://doi.org/10.1074/jbc.R117.001561.
  • Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. 2010. Elevated histone expression promotes life span extension. Mol Cell 39:724–735. https://doi.org/10.1016/j.molcel.2010.08.015.
  • O'Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. 2010. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225. https://doi.org/10.1038/nsmb.1897.
  • Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, Wu H, Berger SL, Adams PD. 2013. Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143. https://doi.org/10.1083/jcb.201212110.
  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002.
  • Barisic D, Stadler MB, Iurlaro M, Schubeler D. 2019. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569:136–140. https://doi.org/10.1038/s41586-019-1115-5.
  • Kumar MA, Kasti K, Balakrishnan L, Milavetz B. 2018. Directed nucleosome sliding during the formation of the simian virus 40 particle exposes DNA sequences required for early transcription. J Virol 93:e01678-18. https://doi.org/10.1128/JVI.01678-18.
  • Steger DJ, Workman JL. 1996. Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18:875–884. https://doi.org/10.1002/bies.950181106.
  • Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CS, D'Arcy S, Luger K. 2020. FACT caught in the act of manipulating the nucleosome. Nature 577:426–431. https://doi.org/10.1038/s41586-019-1820-0.
  • Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696. https://doi.org/10.1016/j.cell.2012.07.018.
  • Xia Y, Yang W, Fa M, Li X, Wang Y, Jiang Y, Zheng Y, Lee JH, Li J, Lu Z. 2017. RNF8 mediates histone H3 ubiquitylation and promotes glycolysis and tumorigenesis. J Exp Med 214:1843–1855. https://doi.org/10.1084/jem.20170015.
  • Maze I, Wenderski W, Noh KM, Bagot RC, Tzavaras N, Purushothaman I, Elsasser SJ, Guo Y, Ionete C, Hurd YL, Tamminga CA, Halene T, Farrelly L, Soshnev AA, Wen D, Rafii S, Birtwistle MR, Akbarian S, Buchholz BA, Blitzer RD, Nestler EJ, Yuan ZF, Garcia BA, Shen L, Molina H, Allis CD. 2015. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87:77–94. https://doi.org/10.1016/j.neuron.2015.06.014.
  • Geng F, Tansey WP. 2012. Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci U S A 109:6060–6065. https://doi.org/10.1073/pnas.1200854109.
  • Auld KL, Brown CR, Casolari JM, Komili S, Silver PA. 2006. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol Cell 21:861–871. https://doi.org/10.1016/j.molcel.2006.02.020.
  • Reinke H, Horz W. 2003. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11:1599–1607. https://doi.org/10.1016/s1097-2765(03)00186-2.
  • Zhao J, Herrera-Diaz J, Gross DS. 2005. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 25:8985–8999. https://doi.org/10.1128/MCB.25.20.8985-8999.2005.
  • Williams SK, Truong D, Tyler JK. 2008. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci U S A 105:9000–9005. https://doi.org/10.1073/pnas.0800057105.
  • Green CM, Almouzni G. 2002. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep 3:28–33. https://doi.org/10.1093/embo-reports/kvf005.
  • Mandemaker IK, Geijer ME, Kik I, Bezstarosti K, Rijkers E, Raams A, Janssens RC, Lans H, Hoeijmakers JH, Demmers JA, Vermeulen W, Marteijn JA. 2018. DNA damage-induced replication stress results in PA200-proteasome-mediated degradation of acetylated histones. EMBO Rep 19:e45566. https://doi.org/10.15252/embr.201745566.
  • Hara R, Mo J, Sancar A. 2000. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 20:9173–9181. https://doi.org/10.1128/mcb.20.24.9173-9181.2000.
  • Sokolova M, Turunen M, Mortusewicz O, Kivioja T, Herr P, Vaharautio A, Bjorklund M, Taipale M, Helleday T, Taipale J. 2017. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. Cell Cycle 16:189–199. https://doi.org/10.1080/15384101.2016.1261765.
  • Senshu T, Ohashi M. 1979. Fate of newly synthesized histones shortly after interruption of DNA replication. J Biochem 86:1259–1267. https://doi.org/10.1093/oxfordjournals.jbchem.a132641.
  • Catarino S, Pereira P, Girao H. 2017. Molecular control of chaperone-mediated autophagy. Essays Biochem 61:663–674. https://doi.org/10.1042/EBC20170057.
  • Kaushik S, Cuervo AM. 2018. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6.
  • Gunjan A, Verreault A. 2003. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549. https://doi.org/10.1016/S0092-8674(03)00896-1.
  • Collins KA, Furuyama S, Biggins S. 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14:1968–1972. https://doi.org/10.1016/j.cub.2004.10.024.
  • Singh RK, Kabbaj MH, Paik J, Gunjan A. 2009. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11:925–933. https://doi.org/10.1038/ncb1903.
  • Cheng H, Bao X, Gan X, Luo S, Rao H. 2017. Multiple E3s promote the degradation of histone H3 variant Cse4. Sci Rep 7:8565. https://doi.org/10.1038/s41598-017-08923-w.
  • Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman JL, Gerton JL. 2010. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40:444–454. https://doi.org/10.1016/j.molcel.2010.10.014.
  • Ohkuni K, Levy-Myers R, Warren J, Au WC, Takahashi Y, Baker RE, Basrai MA. 2018. N-terminal sumoylation of centromeric histone H3 variant Cse4 regulates its proteolysis to prevent mislocalization to non-centromeric chromatin. G3 8:1215–1223. https://doi.org/10.1534/g3.117.300419.
  • Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. 2019. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 47:1051–1069. https://doi.org/10.1093/nar/gky1298.
  • Shrestha RL, Ahn GS, Staples MI, Sathyan KM, Karpova TS, Foltz DR, Basrai MA. 2017. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget 8:46781–46800. https://doi.org/10.18632/oncotarget.18108.
  • Au WC, Zhang T, Mishra PK, Eisenstatt JR, Walker RL, Ocampo J, Dawson A, Warren J, Costanzo M, Baryshnikova A, Flick K, Clark DJ, Meltzer PS, Baker RE, Myers C, Boone C, Kaiser P, Basrai MA. 2020. Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-mediated proteolysis of CENP-A prevents mislocalization of CENP-A for chromosomal stability in budding yeast. PLoS Genet 16:e1008597. https://doi.org/10.1371/journal.pgen.1008597.
  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315. https://doi.org/10.1016/j.devcel.2006.01.014.
  • Athwal RK, Walkiewicz MP, Baek S, Fu S, Bui M, Camps J, Ried T, Sung MH, Dalal Y. 2015. CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8:2. https://doi.org/10.1186/1756-8935-8-2.
  • Moreno-Moreno O, Torras-Llort M, Azorin F. 2006. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34:6247–6255. https://doi.org/10.1093/nar/gkl902.
  • Moreno-Moreno O, Torras-Llort M, Azorin F. 2019. The E3-ligases SCFPpa and APC/CCdh1 co-operate to regulate CENP-ACID expression across the cell cycle. Nucleic Acids Res 47:3395–3406. https://doi.org/10.1093/nar/gkz060.
  • Moreno-Moreno O, Medina-Giro S, Torras-Llort M, Azorin F. 2011. The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID). Curr Biol 21:1488–1493. https://doi.org/10.1016/j.cub.2011.07.041.
  • Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G. 2014. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 53:631–644. https://doi.org/10.1016/j.molcel.2014.01.018.
  • Srivastava S, Foltz DR. 2018. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 127:279–290. https://doi.org/10.1007/s00412-018-0665-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.