47
Views
14
CrossRef citations to date
0
Altmetric
Article

GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation

, , , , , , & show all
Pages 2151-2167 | Received 09 Jan 2016, Accepted 17 May 2016, Published online: 17 Mar 2023

REFERENCES

  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH, Engel JD. 1990. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev 4:1650–1662. http://dx.doi.org/10.1101/gad.4.10.1650.
  • Takahashi S, Onodera K, Motohashi H, Suwabe N, Hayashi N, Yanai N, Nabesima Y, Yamamoto M. 1997. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem 272:12611–12615. http://dx.doi.org/10.1074/jbc.272.19.12611.
  • Takai J, Moriguchi T, Suzuki M, Yu L, Ohneda K, Yamamoto M. 2013. The Gata1 5′ region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs. Blood 122:3450–3460. http://dx.doi.org/10.1182/blood-2013-01-476911.
  • Kaneko H, Shimizu R, Yamamoto M. 2010. GATA factor switching during erythroid differentiation. Curr Opin Hematol 17:163–168. http://dx.doi.org/10.1097/MOH.0b013e32833800b8.
  • Suzuki M, Kobayashi-Osaki M, Tsutsumi S, Pan X, Ohmori S, Takai J, Moriguchi T, Ohneda O, Ohneda K, Shimizu R, Kanki Y, Kodama T, Aburatani H, Yamamoto M. 2013. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells 18:921–933. http://dx.doi.org/10.1111/gtc.12086.
  • Boyes J, Byfield P, Nakatani Y, Ogryzko V. 1998. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598. http://dx.doi.org/10.1038/25166.
  • Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G. 2004. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci U S A 101:8870–8875. http://dx.doi.org/10.1073/pnas.0308605101.
  • Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H, Boyes J. 2006. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25:3264–3274. http://dx.doi.org/10.1038/sj.emboj.7601228.
  • Lin KR, Li CL, Yen JJ, Yang-Yen HF. 2013. Constitutive phosphorylation of GATA-1 at serine26 attenuates the colony-forming activity of erythrocyte-committed progenitors. PLoS One 8:e64269. http://dx.doi.org/10.1371/journal.pone.0064269.
  • Kaneko H, Kobayashi E, Yamamoto M, Shimizu R. 2012. N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program. J Biol Chem 287:21439–21449. http://dx.doi.org/10.1074/jbc.M112.370437.
  • Trainor CD, Ghirlando R, Simpson MA. 2000. GATA zinc finger interactions modulate DNA binding and transactivation. J Biol Chem 275:28157–28166. http://dx.doi.org/10.1074/jbc.M000020200.
  • Trainor CD, Omichinski JD, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G. 1996. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol 16:2238–2247. http://dx.doi.org/10.1128/MCB.16.5.2238.
  • Lowry JA, Atchley WR. 2000. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50:103–115.
  • Shimizu R, Takahashi S, Ohneda K, Engel JD, Yamamoto M. 2001. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J 20:5250–5260. http://dx.doi.org/10.1093/emboj/20.18.5250.
  • Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119. http://dx.doi.org/10.1016/S0092-8674(00)80318-9.
  • Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA. 2005. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 24:2367–2378. http://dx.doi.org/10.1038/sj.emboj.7600703.
  • Johnson KD, Boyer ME, Kang JA, Wickrema A, Cantor AB, Bresnick EH. 2007. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 109:5230–5233. http://dx.doi.org/10.1182/blood-2007-02-072983.
  • Letting DL, Chen YY, Rakowski C, Reedy S, Blobel GA. 2004. Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci U S A 101:476–481. http://dx.doi.org/10.1073/pnas.0306315101.
  • Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. 1998. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci U S A 95:2061–2066. http://dx.doi.org/10.1073/pnas.95.5.2061.
  • Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. 2003. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A 100:8811–8816. http://dx.doi.org/10.1073/pnas.1432147100.
  • Stumpf M, Waskow C, Krötschel M, van Essen D, Rodriguez P, Zhang X, Guyot B, Roeder RG, Borggrefe T. 2006. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci U S A 103:18504–18509. http://dx.doi.org/10.1073/pnas.0604494103.
  • Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, Bernstein BE, Fraenkel E, Cantor AB. 2009. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 36:682–695. http://dx.doi.org/10.1016/j.molcel.2009.11.002.
  • Dore LC, Chlon TM, Brown CD, White KP, Crispino JD. 2012. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 119:3724–3733. http://dx.doi.org/10.1182/blood-2011-09-380634.
  • Tripic T, Deng W, Cheng Y, Zhang Y, Vakoc CR, Gregory GD, Hardison RC, Blobel GA. 2009. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 113:2191–2201. http://dx.doi.org/10.1182/blood-2008-07-169417.
  • Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16:3145–3157. http://dx.doi.org/10.1093/emboj/16.11.3145.
  • Ohneda K, Shimizu R, Nishimura S, Muraosa Y, Takahashi S, Engel JD, Yamamoto M. 2002. A minigene containing four discrete cis elements recapitulates GATA-1 gene expression in vivo. Genes Cells 7:1243–1254. http://dx.doi.org/10.1046/j.1365-2443.2002.00595.x.
  • Yu L, Moriguchi T, Souma T, Takai J, Satoh H, Morito N, Engel JD, Yamamoto M. 2014. GATA2 regulates body water homeostasis through maintaining aquaporin 2 expression in renal collecting ducts. Mol Cell Biol 34:1929–1941. http://dx.doi.org/10.1128/MCB.01659-13.
  • Lowry JA, Gamsjaeger R, Thong SY, Hung W, Kwan AH, Broitman-Maduro G, Matthews JM, Maduro M, Mackay JP. 2009. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains. J Biol Chem 284:5827–5835. http://dx.doi.org/10.1074/jbc.M808712200.
  • Hasegawa A, Shimizu R, Mohandas N, Yamamoto M. 2012. Mature erythrocyte membrane homeostasis is compromised by loss of the GATA1-FOG1 interaction. Blood 119:2615–2623. http://dx.doi.org/10.1182/blood-2011-09-382473.
  • Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018. http://dx.doi.org/10.1093/bioinformatics/btr064.
  • Suzuki M, Moriguchi T, Ohneda K, Yamamoto M. 2009. Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation. Mol Cell Biol 29:1163–1175. http://dx.doi.org/10.1128/MCB.01572-08.
  • Shimizu R, Ohneda K, Engel JD, Trainor CD, Yamamoto M. 2004. Transgenic rescue of GATA-1-deficient mice with GATA-1 lacking a FOG-1 association site phenocopies patients with X-linked thrombocytopenia. Blood 103:2560–2567. http://dx.doi.org/10.1182/blood-2003-07-2514.
  • Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH. 2002. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 100:2040–2045. http://dx.doi.org/10.1182/blood-2002-02-0387.
  • Campbell AE, Wilkinson-White L, Mackay JP, Matthews JM, Blobel GA. 2013. Analysis of disease-causing GATA1 mutations in murine gene complementation systems. Blood 121:5218–5227. http://dx.doi.org/10.1182/blood-2013-03-488080.
  • Mackay JP, Kowalski K, Fox AH, Czolij R, King GF, Crossley M. 1998. Involvement of the N-finger in the self-association of GATA-1. J Biol Chem 273:30560–30567. http://dx.doi.org/10.1074/jbc.273.46.30560.
  • Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP. 2007. Congenital erythropoietic porphyria due to a mutation in GATA-1: the first trans-acting mutation causative for a human porphyria. Blood 109:2618–2621. http://dx.doi.org/10.1182/blood-2006-06-022848.
  • Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K Yamamoto M. 2007. GATA-1 self-association controls erythroid development in vivo. J Biol Chem 282:15862–15871. http://dx.doi.org/10.1074/jbc.M701936200.
  • Bates DL, Chen Y, Kim G, Guo L, Chen L. 2008. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 381:1292–1306. http://dx.doi.org/10.1016/j.jmb.2008.06.072.
  • Chen Y, Bates DL, Dey R, Chen PH, Machado AC, Laird-Offringa IA, Rohs R, Chen L. 2012. DNA binding by GATA transcription factor suggests mechanisms of DNA looping and long-range gene regulation. Cell Rep 2:1197–1206. http://dx.doi.org/10.1016/j.celrep.2012.10.012.
  • Balduini CL, Pecci A, Loffredo G, Izzo P, Noris P, Grosso M, Bergamaschi G, Rosti V, Magrini U, Ceresa IF, Conti V, Poggi V, Savoia A. 2004. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 91:129–140. http://dx.doi.org/10.1160/TH03-05-0290.
  • Tubman VN, Levine JE, Campagna DR, Monahan-Earley R, Dvorak AM, Neufeld EJ, Fleming MD. 2007. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood 109:3297–3299. http://dx.doi.org/10.1182/blood-2006-02-004101.
  • Crispino J, Lodish MB, MacKay JP, Orkin SH. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell 3:219–228. http://dx.doi.org/10.1016/S1097-2765(00)80312-3.
  • Balduini CL, Savoia A. 2012. Genetics of familial forms of thrombocytopenia. Hum Genet 131:1821–1832. http://dx.doi.org/10.1007/s00439-012-1215-x.
  • Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z. 2012. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22:1798–1812. http://dx.doi.org/10.1101/gr.139105.112.
  • Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK. 1994. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531. http://dx.doi.org/10.1038/371528a0.
  • Umesono K, Murakami KK, Thompson CC, Evans RM. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266. http://dx.doi.org/10.1016/0092-8674(91)90020-Y.
  • Kimura M, Yamamoto T, Zhang J, Itoh K, Kyo M, Kamiya T, Aburatani H, Katsuoka F, Kurokawa H, Tanaka T, Motohashi H, Yamamoto M. 2007. Molecular basis distinguishing the DNA binding profile of Nrf2-Maf heterodimer from that of Maf homodimer. J Biol Chem 282:33681–33690. http://dx.doi.org/10.1074/jbc.M706863200.
  • Yamamoto T, Kyo M, Kamiya T, Tanaka T, Engel JD, Motohashi H, Yamamoto M. 2006. Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements. Genes Cells 11:575–591. http://dx.doi.org/10.1111/j.1365-2443.2006.00965.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.