13
Views
3
CrossRef citations to date
0
Altmetric
Article

Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution

, , , &
Pages 2242-2253 | Received 08 Jan 2015, Accepted 14 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Schimmel P, Giege R, Moras D, Yokoyama S. 1993. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A 90:8763–8768. http://dx.doi.org/10.1073/pnas.90.19.8763.
  • Kern D, Lapointe J. 1979. The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. Biochimie 61:1257–1272.
  • Carter CW, Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715–748. http://dx.doi.org/10.1146/annurev.bi.62.070193.003435.
  • Giege R, Sissler M, Florentz C. 1998. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035. http://dx.doi.org/10.1093/nar/26.22.5017.
  • Dietrich A, Weil JH, Marechal-Drouard L. 1992. Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8:115–131.
  • Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. 2012. Noncanonical functions of aminoacyl-tRNA synthetases. Biochemistry 77:15–25. http://dx.doi.org/10.1134/S0006297912010026.
  • Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED. 2003. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72:1293–1299. http://dx.doi.org/10.1086/375039.
  • Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y. 2011. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200. http://dx.doi.org/10.1016/j.ajhg.2010.12.010.
  • Elo JM, Yadavalli SS, Euro L, Isohanni P, Gotz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, Caruso EM, Pihko H, Ibba M, Tyynismaa H, Suomalainen A. 2012. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Hum Mol Genet 21:4521–4529. http://dx.doi.org/10.1093/hmg/dds294.
  • Riley LG, Cooper S, Hickey P, Rudinger-Thirion J, McKenzie M, Compton A, Lim SC, Thorburn D, Ryan MT, Giege R, Bahlo M, Christodoulou J. 2010. Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia-MLASA syndrome. Am J Hum Genet 87:52–59. http://dx.doi.org/10.1016/j.ajhg.2010.06.001.
  • Kurland CG, Andersson SG. 2000. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820. http://dx.doi.org/10.1128/MMBR.64.4.786-820.2000.
  • Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC. 2004. Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279:49656–49663. http://dx.doi.org/10.1074/jbc.M408081200.
  • Chang KJ, Wang CC. 2004. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279:13778–13785. http://dx.doi.org/10.1074/jbc.M311269200.
  • Natsoulis G, Hilger F, Fink GR. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46:235–243. http://dx.doi.org/10.1016/0092-8674(86)90740-3.
  • Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263:52–57.
  • Souciet G, Menand B, Ovesna J, Cosset A, Dietrich A, Wintz H. 1999. Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur J Biochem 266:848–854. http://dx.doi.org/10.1046/j.1432-1327.1999.00922.x.
  • Shiba K, Schimmel P, Motegi H, Noda T. 1994. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 269:30049–30055.
  • Chiu WC, Chang CP, Wen WL, Wang SW, Wang CC. 2010. Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 27:1415–1424. http://dx.doi.org/10.1093/molbev/msq025.
  • Turner RJ, Lovato M, Schimmel P. 2000. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275:27681–27688. http://dx.doi.org/10.1074/jbc.M003416200.
  • Chang CP, Tseng YK, Ko CY, Wang CC. 2012. Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 40:314–322. http://dx.doi.org/10.1093/nar/gkr724.
  • Blattner FR, Plunkett G, III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462. http://dx.doi.org/10.1126/science.277.5331.1453.
  • Tikole S, Sankararamakrishnan R. 2006. A survey of mRNA sequences with a non-AUG start codon in RefSeq database. J Biomol Struct Dyn 24:33–42. http://dx.doi.org/10.1080/07391102.2006.10507096.
  • Chang CP, Chen SJ, Lin CH, Wang TL, Wang CC. 2010. A single sequence context cannot satisfy all non-AUG initiator codons in yeast. BMC Microbiol 10:188. http://dx.doi.org/10.1186/1471-2180-10-188.
  • Cigan AM, Pabich EK, Donahue TF. 1988. Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol Cell Biol 8:2964–2975.
  • Baim SB, Sherman F. 1988. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:1591–1601.
  • Cigan AM, Donahue TF. 1987. Sequence and structural features associated with translational initiator regions in yeast—a review. Gene 59:1–18. http://dx.doi.org/10.1016/0378-1119(87)90261-7.
  • Chen SJ, Lin G, Chang KJ, Yeh LS, Wang CC. 2008. Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. J Biol Chem 283:3173–3180. http://dx.doi.org/10.1074/jbc.M706968200.
  • Chang KJ, Lin G, Men LC, Wang CC. 2006. Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 281:7775–7783. http://dx.doi.org/10.1074/jbc.M511265200.
  • Abramczyk D, Tchorzewski M, Grankowski N. 2003. Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 20:1045–1052. http://dx.doi.org/10.1002/yea.1020.
  • Diaz-Lazcoz Y, Aude JC, Nitschke P, Chiapello H, Landes-Devauchelle C, Risler JL. 1998. Evolution of genes, evolution of species: the case of aminoacyl-tRNA synthetases. Mol Biol Evol 15:1548–1561. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025882.
  • Wolf YI, Aravind L, Grishin NV, Koonin EV. 1999. Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710.
  • Woese CR, Olsen GJ, Ibba M, Soll D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236. http://dx.doi.org/10.1128/MMBR.64.1.202-236.2000.
  • Huang HY, Kuei Y, Chao HY, Chen SJ, Yeh LS, Wang CC. 2006. Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem 281:31430–31439. http://dx.doi.org/10.1074/jbc.M601869200.
  • Wang CC, Chang KJ, Tang HL, Hsieh CJ, Schimmel P. 2003. Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42:1646–1651. http://dx.doi.org/10.1021/bi025964c.
  • Liao CC, Lin CH, Chen SJ, Wang CC. 2012. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 40:9171–9181. http://dx.doi.org/10.1093/nar/gks689.
  • Ripmaster TL, Shiba K, Schimmel P. 1995. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci U S A 92:4932–4936. http://dx.doi.org/10.1073/pnas.92.11.4932.
  • Hann SR, Sloan-Brown K, Spotts GD. 1992. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 6:1229–1240. http://dx.doi.org/10.1101/gad.6.7.1229.
  • Saris CJ, Domen J, Berns A. 1991. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10:655–664.
  • Acland P, Dixon M, Peters G, Dickson C. 1990. Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343:662–665. http://dx.doi.org/10.1038/343662a0.
  • Guthrie C, Fink G. 1991. Guide to yeast genetics and molecular biology. Academic Press, San Diego, CA.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673.
  • Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. http://dx.doi.org/10.2307/2408678.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. http://dx.doi.org/10.1093/molbev/mst197.
  • Bergsten J. 2005. A review of long-branch attraction. Cladistics 21:163–193. http://dx.doi.org/10.1111/j.1096-0031.2005.00059.x.
  • Lovato MA, Chihade JW, Schimmel P. 2001. Translocation within the acceptor helix of a major tRNA identity determinant. EMBO J 20:4846–4853. http://dx.doi.org/10.1093/emboj/20.17.4846.
  • Lovato MA, Swairjo MA, Schimmel P. 2004. Positional recognition of a tRNA determinant dependent on a peptide insertion. Mol Cell 13:843–851. http://dx.doi.org/10.1016/S1097-2765(04)00125-X.
  • Hou YM, Schimmel P. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333:140–145. http://dx.doi.org/10.1038/333140a0.
  • McClain WH, Foss K. 1988. Changing the acceptor identity of a transfer RNA by altering nucleotides in a “variable pocket. ”Science 241:1804–1807.
  • Shabalina SA, Ogurtsov AY, Rogozin IB, Koonin EV, Lipman DJ. 2004. Comparative analysis of orthologous eukaryotic mRNAs: potential hidden functional signals. Nucleic Acids Res 32:1774–1782. http://dx.doi.org/10.1093/nar/gkh313.
  • Zuker M. 2003. Mfold Web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. http://dx.doi.org/10.1093/nar/gkg595.
  • Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. 2004. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol Microbiol 51:987–1001. http://dx.doi.org/10.1046/j.1365-2958.2003.03898.x.
  • Chihade JW, Brown JR, Schimmel PR, Ribas De Pouplana L. 2000. Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proc Natl Acad Sci U S A 97:12153–12157. http://dx.doi.org/10.1073/pnas.220388797.
  • Brown JR, Doolittle WF. 1997. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502.
  • Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol 49:169–181. http://dx.doi.org/10.1007/PL00006540.
  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545.
  • Byrne KP, Wolfe KH. 2007. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics 175:1341–1350. http://dx.doi.org/10.1534/genetics.106.066951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.