30
Views
24
CrossRef citations to date
0
Altmetric
Article

Neurofibromatosis Type 1 Alternative Splicing Is a Key Regulator of Ras Signaling in Neurons

, , &
Pages 2188-2197 | Received 06 Jan 2014, Accepted 21 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. 2009. Neurofibromatosis type 1 revisited. Pediatrics 123:124–133. http://dx.doi.org/10.1542/peds.2007-3204.
  • Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859. http://dx.doi.org/10.1016/0092-8674(90)90151-4.
  • Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM. 1990. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849. http://dx.doi.org/10.1016/0092-8674(90)90150-D.
  • Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F. 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841. http://dx.doi.org/10.1016/0092-8674(90)90149-9.
  • DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273. http://dx.doi.org/10.1016/0092-8674(92)90407-4.
  • Le LQ, Parada LF. 2007. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 26:4609–4616. http://dx.doi.org/10.1038/sj.onc.1210261.
  • Gutmann DH, Parada LF, Silva AJ, Ratner N. 2012. Neurofibromatosis type 1: modeling CNS dysfunction. J. Neurosci. 32:14087–14093. http://dx.doi.org/10.1523/JNEUROSCI.3242-12.2012.
  • Diggs-Andrews KA, Gutmann DH. 2013. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci. 36:237–247. http://dx.doi.org/10.1016/j.tins.2012.12.002.
  • Xu W, Mulligan LM, Ponder MA, Liu L, Smith BA, Mathew CG, Ponder BA. 1992. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 4:337–342. http://dx.doi.org/10.1002/gcc.2870040411.
  • Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608. http://dx.doi.org/10.1016/0092-8674(90)90024-9.
  • Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y. 2002. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5:95–96. http://dx.doi.org/10.1038/nn792.
  • Dasgupta B, Dugan LL, Gutmann DH. 2003. The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J. Neurosci. 23:8949–8954.
  • The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, Hariharan IK, Bernards A. 1997. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791–794. http://dx.doi.org/10.1126/science.276.5313.791.
  • Hirvonen O, Lakkakorpi J, Aaltonen V, Hirvonen H, Rossi M, Karvonen SL, Yla-Outinen H, Kalimo H, Peltonen J. 1998. Developmental regulation of NF1 tumor suppressor gene in human peripheral nerve. J. Neurocytol. 27:939–952. http://dx.doi.org/10.1023/A:1006905224474.
  • Daston MM, Ratner N. 1992. Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev. Dyn. 195:216–226. http://dx.doi.org/10.1002/aja.1001950307.
  • Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N. 1992. The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 8:415–428. http://dx.doi.org/10.1016/0896-6273(92)90270-N.
  • Gutmann DH, Wood DL, Collins FS. 1991. Identification of the neurofibromatosis type 1 gene product. Proc. Natl. Acad. Sci. U. S. A. 88:9658–9662. http://dx.doi.org/10.1073/pnas.88.21.9658.
  • Gutmann DH, Geist RT, Wright DE, Snider WD. 1995. Expression of the neurofibromatosis 1 (NF1) isoforms in developing and adult rat tissues. Cell Growth Differ. 6:315–323.
  • Golubic M, Roudebush M, Dobrowolski S, Wolfman A, Stacey DW. 1992. Catalytic properties, tissue and intracellular distribution of neurofibromin. Oncogene 7:2151–2159.
  • Bernards A, Snijders AJ, Hannigan GE, Murthy AE, Gusella JF. 1993. Mouse neurofibromatosis type 1 cDNA sequence reveals high degree of conservation of both coding and non-coding mRNA segments. Hum. Mol. Genet. 2:645–650. http://dx.doi.org/10.1093/hmg/2.6.645.
  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8:1019–1029. http://dx.doi.org/10.1101/gad.8.9.1019.
  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. 1994. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7:353–361. http://dx.doi.org/10.1038/ng0794-353.
  • Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF. 2001. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15:859–876. http://dx.doi.org/10.1101/gad.862101.
  • Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O'Malley KL, Wozniak DF, Gutmann DH. 2010. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum. Mol. Genet. 19:4515–4528. http://dx.doi.org/10.1093/hmg/ddq382.
  • Brown JA, Gianino SM, Gutmann DH. 2010. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J. Neurosci. 30:5579–5589. http://dx.doi.org/10.1523/JNEUROSCI.3994-09.2010.
  • Brown JA, Diggs-Andrews KA, Gianino SM, Gutmann DH. 2012. Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci. 49:13–22. http://dx.doi.org/10.1016/j.mcn.2011.08.008.
  • Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, Cioffi D, Jacks T, Bourtchuladze R. 1997. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat. Genet. 15:281–284. http://dx.doi.org/10.1038/ng0397-281.
  • Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. 2002. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530. http://dx.doi.org/10.1038/nature711.
  • Wang Y, Nicol GD, Clapp DW, Hingtgen CM. 2005. Sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability. J. Neurophysiol. 94:3670–3676. http://dx.doi.org/10.1152/jn.00489.2005.
  • Hingtgen CM. 2008. Neurofibromatosis: the role of guanosine triphosphatase activating proteins in sensory neuron function. Acta Physiol. Sin. 60:581–583.
  • Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ. 2005. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15:1961–1967. http://dx.doi.org/10.1016/j.cub.2005.09.043.
  • Mainberger F, Jung NH, Zenker M, Wahllander U, Freudenberg L, Langer S, Berweck S, Winkler T, Straube A, Heinen F, Granstrom S, Mautner VF, Lidzba K, Mall V. 2013. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol. 13:131. http://dx.doi.org/10.1186/1471-2377-13-131.
  • Diggs-Andrews KA, Tokuda K, Izumi Y, Zorumski CF, Wozniak DF, Gutmann DH. 2013. Dopamine deficiency underlies learning deficits in neurofibromatosis-1 mice. Ann. Neurol. 73:309–315. http://dx.doi.org/10.1002/ana.23793.
  • Danglot G, Regnier V, Fauvet D, Vassal G, Kujas M, Bernheim A. 1995. Neurofibromatosis 1 (NF1) mRNAs expressed in the central nervous system are differentially spliced in the 5′ part of the gene. Hum. Mol. Genet. 4:915–920. http://dx.doi.org/10.1093/hmg/4.5.915.
  • Bernards A, Haase VH, Murthy AE, Menon A, Hannigan GE, Gusella JF. 1992. Complete human NF1 cDNA sequence: two alternatively spliced mRNAs and absence of expression in a neuroblastoma line. DNA Cell Biol. 11:727–734. http://dx.doi.org/10.1089/dna.1992.11.727.
  • Gutmann DH, Zhang Y, Hirbe A. 1999. Developmental regulation of a neuron-specific neurofibromatosis 1 isoform. Ann. Neurol. 46:777–782. http://dx.doi.org/10.1002/1531-8249(199911)46:5<777::AID-ANA15>3.0.CO;2-H.
  • Danglot G, Teinturier C, Duverger A, Bernheim A. 1994. Tissue-specific alternative splicing of neurofibromatosis 1 (NF1) mRNA. Biomed. Pharmacother. 48:365–372. http://dx.doi.org/10.1016/0753-3322(94)90053-1.
  • Gutmann DH, Geist RT, Rose K, Wright DE. 1995. Expression of two new protein isoforms of the neurofibromatosis type 1 gene product, neurofibromin, in muscle tissues. Dev. Dyn. 202:302–311. http://dx.doi.org/10.1002/aja.1002020309.
  • Gutman DH, Andersen LB, Cole JL, Swaroop M, Collins FS. 1993. An alternatively-spliced mRNA in the carboxy terminus of the neurofibromatosis type 1 (NF1) gene is expressed in muscle. Hum. Mol. Genet. 2:989–992. http://dx.doi.org/10.1093/hmg/2.7.989.
  • Geist RT, Gutmann DH. 1996. Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neurosci. Lett. 211:85–88. http://dx.doi.org/10.1016/0304-3940(96)12730-0.
  • Andersen LB, Ballester R, Marchuk DA, Chang E, Gutmann DH, Saulino AM, Camonis J, Wigler M, Collins FS. 1993. A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Mol. Cell. Biol. 13:487–495.
  • Gutmann DH, Cole JL, Collins FS. 1995. Expression of the neurofibromatosis type 1 (NF1) gene during mouse embryonic development. Prog. Brain Res. 105:327–335. http://dx.doi.org/10.1016/S0079-6123(08)63311-7.
  • Suzuki Y, Suzuki H, Kayama T, Yoshimoto T, Shibahara S. 1991. Brain tumors predominantly express the neurofibromatosis type 1 gene transcripts containing the 63 base insert in the region coding for GTPase activating protein-related domain. Biochem. Biophys. Res. Commun. 181:955–961. http://dx.doi.org/10.1016/0006-291X(91)92029-J.
  • Mantani A, Wakasugi S, Yokota Y, Abe K, Ushio Y, Yamamura K. 1994. A novel isoform of the neurofibromatosis type-1 mRNA and a switch of isoforms during murine cell differentiation and proliferation. Gene 148:245–251. http://dx.doi.org/10.1016/0378-1119(94)90695-5.
  • Huynh DP, Nechiporuk T, Pulst SM. 1994. Differential expression and tissue distribution of type I and type II neurofibromins during mouse fetal development. Dev. Biol. 161:538–551. http://dx.doi.org/10.1006/dbio.1994.1052.
  • Metheny LJ, Skuse GR. 1996. NF1 mRNA isoform expression in PC12 cells: modulation by extrinsic factors. Exp. Cell Res. 228:44–49. http://dx.doi.org/10.1006/excr.1996.0297.
  • Barron VA, Lou H. 2012. Alternative splicing of the neurofibromatosis type I pre-mRNA. Biosci. Rep. 32:131–138. http://dx.doi.org/10.1042/BSR20110060.
  • Barron VA, Zhu H, Hinman MN, Ladd AN, Lou H. 2010. The neurofibromatosis type I pre-mRNA is a novel target of CELF protein-mediated splicing regulation. Nucleic Acids Res. 38:253–264. http://dx.doi.org/10.1093/nar/gkp766.
  • Fleming VA, Geng C, Ladd AN, Lou H. 2012. Alternative splicing of the neurofibromatosis type 1 pre-mRNA is regulated by the muscleblind-like proteins and the CUG-BP and ELAV-like factors. BMC Mol. Biol. 13:35. http://dx.doi.org/10.1186/1471-2199-13-35.
  • Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G, Luo G, Siegel RE, Lou H. 2011. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 108:E627–E635. http://dx.doi.org/10.1073/pnas.1103344108.
  • Zhu H, Hinman MN, Hasman RA, Mehta P, Lou H. 2008. Regulation of neuron-specific alternative splicing of neurofibromatosis type 1 pre-mRNA. Mol. Cell. Biol. 28:1240–1251. http://dx.doi.org/10.1128/MCB.01509-07.
  • Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, Kikuchi A, Hattori S, Kuratsu J, Saya H, Araki N. 2003. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J. Biol. Chem. 278:26958–26969. http://dx.doi.org/10.1074/jbc.M209413200.
  • Costa RM, Yang T, Huynh DP, Pulst SM, Viskochil DH, Silva AJ, Brannan CI. 2001. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat. Genet. 27:399–405. http://dx.doi.org/10.1038/86898.
  • Bibel M, Richter J, Lacroix E, Barde YA. 2007. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2:1034–1043. http://dx.doi.org/10.1038/nprot.2007.147.
  • Lou H, Yang Y, Cote GJ, Berget SM, Gagel RF. 1995. An intron enhancer containing a 5′ splice site sequence in the human calcitonin/calcitonin gene-related peptide gene. Mol. Cell. Biol. 15:7135–7142.
  • Hinman MN, Zhou HL, Sharma A, Lou H. 2013. All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing. Nucleic Acids Res. 41:5049–5061. http://dx.doi.org/10.1093/nar/gkt166.
  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 90:8424–8428. http://dx.doi.org/10.1073/pnas.90.18.8424.
  • Bouck J, Litwin S, Skalka AM, Katz RA. 1998. In vivo selection for intronic splicing signals from a randomized pool. Nucleic Acids Res. 26:4516–4523. http://dx.doi.org/10.1093/nar/26.19.4516.
  • Coolidge CJ, Seely RJ, Patton JG. 1997. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res. 25:888–896. http://dx.doi.org/10.1093/nar/25.4.888.
  • Bouck J, Fu XD, Skalka AM, Katz RA. 1995. Genetic selection for balanced retroviral splicing: novel regulation involving the second step can be mediated by transitions in the polypyrimidine tract. Mol. Cell. Biol. 15:2663–2671.
  • Roscigno RF, Weiner M, Garcia-Blanco MA. 1993. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J. Biol. Chem. 268:11222–11229.
  • Singh R, Valcarcel J, Green MR. 1995. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173–1176. http://dx.doi.org/10.1126/science.7761834.
  • Lush ME, Li Y, Kwon CH, Chen J, Parada LF. 2008. Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J. Neurosci. 28:1580–1587. http://dx.doi.org/10.1523/JNEUROSCI.5236-07.2008.
  • Guilding C, McNair K, Stone TW, Morris BJ. 2007. Restored plasticity in a mouse model of neurofibromatosis type 1 via inhibition of hyperactive ERK and CREB. Eur. J. Neurosci. 25:99–105. http://dx.doi.org/10.1111/j.1460-9568.2006.05238.x.
  • Moroy T, Heyd F. 2007. The impact of alternative splicing in vivo: mouse models show the way. RNA 13:1155–1171. http://dx.doi.org/10.1261/rna.554607.
  • Scheffzek K, Ahmadian MR, Wiesmuller L, Kabsch W, Stege P, Schmitz F, Wittinghofer A. 1998. Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J. 17:4313–4327. http://dx.doi.org/10.1093/emboj/17.15.4313.
  • Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. 2008. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–560. http://dx.doi.org/10.1016/j.cell.2008.09.060.
  • Peng S, Zhang Y, Zhang J, Wang H, Ren B. 2010. ERK in learning and memory: a review of recent research. Int. J. Mol. Sci. 11:222–232. http://dx.doi.org/10.3390/ijms11010222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.