22
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Circular RNA CDR1as Exerts Oncogenic Properties Partially through Regulating MicroRNA 641 in Cholangiocarcinoma

, , , , & ORCID Icon
Article: e00042-20 | Received 04 Feb 2020, Accepted 06 May 2020, Published online: 03 Mar 2023

REFERENCES

  • Rizvi S, Gores GJ. 2013. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145:1215–1229. https://doi.org/10.1053/j.gastro.2013.10.013.
  • Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. 2005. Cholangiocarcinoma. Lancet 366:1303–1314. https://doi.org/10.1016/S0140-6736(05)67530-7.
  • Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BJ, Youssef BM, Klimstra D, Blumgart LH. 2001. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 234:507–517. https://doi.org/10.1097/00000658-200110000-00010.
  • Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, Pawlik TM, Gores GJ. 2014. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 60:1268–1289. https://doi.org/10.1016/j.jhep.2014.01.021.
  • de Jong MC, Nathan H, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H, Pulitano C, Barroso E, Clary BM, Aldrighetti L, Ferrone CR, Zhu AX, Bauer TW, Walters DM, Gamblin TC, Nguyen KT, Turley R, Popescu I, Hubert C, Meyer S, Schulick RD, Choti MA, Gigot JF, Mentha G, Pawlik TM. 2011. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol 29:3140–3145. https://doi.org/10.1200/JCO.2011.35.6519.
  • Liu L, Wang J, Khanabdali R, Kalionis B, Tai X, Xia S. 2017. Circular RNAs: isolation, characterization and their potential role in diseases. RNA Biol 14:1715–1721. https://doi.org/10.1080/15476286.2017.1367886.
  • He J, Xie Q, Xu H, Li J, Li Y. 2017. Circular RNAs and cancer. Cancer Lett 396:138–144. https://doi.org/10.1016/j.canlet.2017.03.027.
  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M. 2017. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16:94. https://doi.org/10.1186/s12943-017-0663-2.
  • Lasda E, Parker R. 2014. Circular RNAs: diversity of form and function. RNA 20:1829–1842. https://doi.org/10.1261/rna.047126.114.
  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. 2014. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019.
  • Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, Xu Y, Hu J, Dong G, Xu PL, Yin R. 2016. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep 6:35576. https://doi.org/10.1038/srep35576.
  • Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R, Guo J. 2017. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer 116:626–633. https://doi.org/10.1038/bjc.2016.451.
  • Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W. 2017. Circular RNAs in human cancer. Mol Cancer 16:25. https://doi.org/10.1186/s12943-017-0598-7.
  • Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. 2016. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11:e0158347. https://doi.org/10.1371/journal.pone.0158347.
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928.
  • Peng L, Yuan XQ, Li GC. 2015. The emerging landscape of circular RNA ciRS-7 in cancer. Oncol Rep 33:2669–2674. https://doi.org/10.3892/or.2015.3904.
  • Yang X, Xiong Q, Wu Y, Li S, Ge F. 2017. Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J Proteome Res 16:3891–3902. https://doi.org/10.1021/acs.jproteome.7b00519.
  • Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. 2017. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143:17–27. https://doi.org/10.1007/s00432-016-2256-7.
  • Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y, Goel A. 2017. Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:3918–3928. https://doi.org/10.1158/1078-0432.CCR-16-2541.
  • Zhang X, Yang D, Wei Y. 2018. Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer. Onco Targets Ther 11:3979–3987. https://doi.org/10.2147/OTT.S158316.
  • Liu L, Liu F-B, Huang M, Xie K, Xie Q-S, Liu C-H, Shen M-J, Huang Q. 2019. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat Dis Int 18:580–586. https://doi.org/10.1016/j.hbpd.2019.03.003.
  • Jiang X-M, Li Z-L, Li J-L, Xu Y, Leng K-M, Cui Y-F, Sun D-J. 2018. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as. Eur Rev Med Pharmacol Sci 22:365–371. https://doi.org/10.26355/eurrev_201801_14182.
  • Yao R, Zheng H, Wu L, Cai P. 2018. miRNA-641 inhibits the proliferation, migration, and invasion and induces apoptosis of cervical cancer cells by directly targeting ZEB1. Onco Targets Ther 11:8965–8976. https://doi.org/10.2147/OTT.S190303.
  • Wang L-W, Li X-B, Liu Z, Zhao L-H, Wang Y, Yue L. 2019. Long non-coding RNA OIP5-AS1 promotes proliferation of gastric cancer cells by targeting miR-641. Eur Rev Med Pharmacol Sci 23:10776–10784. https://doi.org/10.26355/eurrev_201912_19780.
  • Fan Y-F, Yu Z-P, Cui X-Y. 2019. lncRNA colorectal neoplasia differentially expressed (CRNDE) promotes proliferation and inhibits apoptosis in non-small cell lung cancer cells by regulating the miR-641/CDK6 axis. Med Sci Monit 25:2745–2755. https://doi.org/10.12659/MSM.913420.
  • Hinske LC, Heyn J, Hubner M, Rink J, Hirschberger S, Kreth S. 2017. Intronic miRNA-641 controls its host gene’s pathway PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme. Biochem Biophys Res Commun 489:477–483. https://doi.org/10.1016/j.bbrc.2017.05.175.
  • Ewald F, Norz D, Grottke A, Hofmann BT, Nashan B, Jucker M. 2014. Dual inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors. Invest New Drugs 32:1144–1154. https://doi.org/10.1007/s10637-014-0149-7.
  • Shen H, Zhang J, Zhang Y, Feng Q, Wang H, Li G, Jiang W, Li X. 2019. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway. Gene 698:50–60. https://doi.org/10.1016/j.gene.2019.02.044.
  • Tang W, Ji M, He G, Yang L, Niu Z, Jian M, Wei Y, Ren L, Xu J. 2017. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther 10:2045–2056. https://doi.org/10.2147/OTT.S131597.
  • Huang H, Wei L, Qin T, Yang N, Li Z, Xu Z. 2019. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-kappaB signals. Cancer Biol Ther 20:73–80. https://doi.org/10.1080/15384047.2018.1507254.
  • Yan B, Zhang W, Mao X-W, Jiang L-Y. 2018. Circular RNA ciRS-7 correlates with advance disease and poor prognosis, and its down-regulation inhibits cells proliferation while induces cells apoptosis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci 22:8712–8721. https://doi.org/10.26355/eurrev_201812_16636.
  • Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, Liu F, Gu L, Lian Y, Li J, Wu Y, Zhang X, Shan B. 2018. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett 426:37–46. https://doi.org/10.1016/j.canlet.2018.03.049.
  • Chen H, Mao M, Jiang J, Zhu D, Li P. 2019. Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. Onco Targets Ther 12:3869–3879. https://doi.org/10.2147/OTT.S207938.
  • Kong Q, Shu N, Li J, Xu N. 2018. miR-641 functions as a tumor suppressor by targeting MDM2 in human lung cancer. Oncol Res 26:735–741. https://doi.org/10.3727/096504017X15021536183490.
  • Chen J, Cui J, Guo X, Cao X, Li Q. 2018. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF1. Cancer Med 7:1394–1403. https://doi.org/10.1002/cam4.1326.
  • Zhang N, Meng X, Mei L, Zhao C, Chen W. 2019. LncRNA DLX6-AS1 promotes tumor proliferation and metastasis in osteosarcoma through modulating miR-641/HOXA9 signaling pathway. J Cell Biochem 120:11478–11489. https://doi.org/10.1002/jcb.28426.
  • Zhu Y, Liu B, Zhang P, Zhang J, Wang L. 2019. LncRNA TUSC8 inhibits the invasion and migration of cervical cancer cells via miR-641/PTEN axis. Cell Biol Int 43:781–788. https://doi.org/10.1002/cbin.11152.
  • Sithanandam G, Fornwald LW, Fields J, Anderson LM. 2005. Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene 24:1847–1859. https://doi.org/10.1038/sj.onc.1208381.
  • Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH. 2006. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 18:2262–2271. https://doi.org/10.1016/j.cellsig.2006.05.019.
  • Virtakoivu R, Pellinen T, Rantala JK, Perala M, Ivaska J. 2012. Distinct roles of AKT isoforms in regulating beta1-integrin activity, migration, and invasion in prostate cancer. Mol Biol Cell 23:3357–3369. https://doi.org/10.1091/mbc.E12-03-0213.
  • Boufraqech M, Zhang L, Jain M, Patel D, Ellis R, Xiong Y, He M, Nilubol N, Merino MJ, Kebebew E. 2014. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer 21:517–531. https://doi.org/10.1530/ERC-14-0077.
  • Obasi TC, Braicu C, Iacob BC, Bodoki E, Jurj A, Raduly L, Oniga I, Berindan-Neagoe I, Oprean R. 2018. Securidaca-saponins are natural inhibitors of AKT, MCL-1, and BCL2L1 in cervical cancer cells. Cancer Manag Res 10:5709–5724. https://doi.org/10.2147/CMAR.S163328.
  • Li J, Liu X, Li C, Wang W. 2019. miR-224-5p inhibits proliferation, migration, and invasion by targeting PIK3R3/AKT3 in uveal melanoma. J Cell Biochem 120:12412–12421. https://doi.org/10.1002/jcb.28507.
  • Nagao T, Kurosu T, Umezawa Y, Nogami A, Oshikawa G, Tohda S, Yamamoto M, Miura O. 2014. Proliferation and survival signaling from both Jak2-V617F and Lyn involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute myeloid leukemia transformed from polycythemia vera. PLoS One 9:e84746. https://doi.org/10.1371/journal.pone.0084746.
  • Wei C, Liu Z, Li L, Zhang Y, Fang Z, Fan Y. 2018. The anticancer effect of Huaier extract in renal cancer 786-O cells. Pharmacology 102:316–323. https://doi.org/10.1159/000492935.
  • Ge Y, Xu K. 2016. Alpha-synuclein contributes to malignant progression of human meningioma via the Akt/mTOR pathway. Cancer Cell Int 16:86. https://doi.org/10.1186/s12935-016-0361-y.
  • Wu C-E, Chen M-H, Yeh C-N. 2019. mTOR inhibitors in advanced biliary tract cancers. Int J Mol Sci 20:500. https://doi.org/10.3390/ijms20030500.
  • Ghini F, Rubolino C, Climent M, Simeone I, Marzi MJ, Nicassio F. 2018. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat Commun 9:3119. https://doi.org/10.1038/s41467-018-05182-9.
  • de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Großhans H. 2015. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep 16:500–511. https://doi.org/10.15252/embr.201540078.
  • Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. 2019. Structural basis for target-directed microRNA degradation. Mol Cell 75:1243–1255.e7. https://doi.org/10.1016/j.molcel.2019.06.019.
  • Wadkins RM, Jares-Erijman EA, Klement R, Rüdiger A, Jovin TM. 1996. Actinomycin D binding to single-stranded DNA: sequence specificity and hemi-intercalation model from fluorescence and 1H NMR spectroscopy. J Mol Biol 262:53–68. https://doi.org/10.1006/jmbi.1996.0498.
  • Luo Y, Tian Z, Hua X, Huang M, Xu J, Li J, Huang H, Cohen M, Huang C. 2020. Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression. Cell Mol Life Sci 77:351–363. https://doi.org/10.1007/s00018-019-03185-3.
  • Kuang D, Zhou J, Yu L, Zeng W, Xiao J, Zhu G, Zhang Z, Chen X. 2016. DDAH1-V3 transcript might act as miR-21 sponge to maintain balance of DDAH1-V1 in cultured HUVECs. Nitric Oxide 60:59–68. https://doi.org/10.1016/j.niox.2016.09.008.
  • National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.