194
Views
105
CrossRef citations to date
0
Altmetric
Minireview

Kinases and Pseudokinases: Lessons from RAF

, , , &
Pages 1538-1546 | Published online: 20 Mar 2023

REFERENCES

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 2002. The protein kinase complement of the human genome. Science 298:1912–1934. http://dx.doi.org/10.1126/science.1075762.
  • Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, Zhai Y, Svard S, Gillin FD. 2011. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 12:R66. http://dx.doi.org/10.1186/gb-2011-12-7-r66.
  • Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP. 2011. Polymorphic family of injected pseudokinases is paramount in toxoplasma virulence. Proc. Natl. Acad. Sci. U. S. A. 108:9625–9630. http://dx.doi.org/10.1073/pnas.1015980108.
  • Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. 2007. Structural and functional diversity of the microbial kinome. PLoS Biol. 5:e17. http://dx.doi.org/10.1371/journal.pbio.0050017.
  • Min X, Lee BH, Cobb MH, Goldsmith EJ. 2004. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303–1311. http://dx.doi.org/10.1016/j.str.2004.04.014.
  • Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. 2000. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 275:16795–16801. http://dx.doi.org/10.1074/jbc.275.22.16795.
  • Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, Murray JW, Higgins JM, Knapp S. 2009. Structure and functional characterization of the atypical human kinase haspin. Proc. Natl. Acad. Sci. U. S. A. 106:20198–20203. http://dx.doi.org/10.1073/pnas.0901989106.
  • Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, Ungureanu D, Hammaren H, Silvennoinen O, Varghese LN, Chen K, Tripaydonis A, Jura N, Fukuda K, Qin J, Nimchuk Z, Mudgett MB, Elowe S, Gee CL, Liu L, Daly RJ, Manning G, Babon JJ, Lucet IS. 2014. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem. J. 457:323–334. http://dx.doi.org/10.1042/BJ20131174.
  • Zeqiraj E, van Aalten DM. 2010. Pseudokinases—remnants of evolution or key allosteric regulators? Curr. Opin. Struct. Biol. 20:772–781. http://dx.doi.org/10.1016/j.sbi.2010.10.001.
  • Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. 2006. Emerging roles of pseudokinases. Trends Cell Biol. 16:443–452. http://dx.doi.org/10.1016/j.tcb.2006.07.003.
  • Kannan N, Taylor SS. 2008. Rethinking pseudokinases. Cell 133:204–205. http://dx.doi.org/10.1016/j.cell.2008.04.005.
  • Eyers PA, Murphy JM. 2013. Dawn of the dead: protein pseudokinases signal new adventures in cell biology. Biochem. Soc. Trans. 41:969–974. http://dx.doi.org/10.1042/BST20130115.
  • Taylor SS, Kornev AP. 2010. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. http://dx.doi.org/10.1016/j.tibs.2010.09.006.
  • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM. 1991. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:407–414. http://dx.doi.org/10.1126/science.1862342.
  • Kornev AP, Haste NM, Taylor SS, Eyck LF. 2006. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. U. S. A. 103:17783–17788. http://dx.doi.org/10.1073/pnas.0607656103.
  • Meharena HS, Chang P, Keshwani MM, Oruganty K, Nene AK, Kannan N, Taylor SS, Kornev AP. 2013. Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol. 11:e1001680. http://dx.doi.org/10.1371/journal.pbio.1001680.
  • Kornev AP, Taylor SS, Ten Eyck LF. 2008. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. U. S. A. 105:14377–14382. http://dx.doi.org/10.1073/pnas.0807988105.
  • Masterson LR, Shi L, Metcalfe E, Gao J, Taylor SS, Veglia G. 2011. Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 108:6969–6974. http://dx.doi.org/10.1073/pnas.1102701108.
  • Huse M, Kuriyan J. 2002. The conformational plasticity of protein kinases. Cell 109:275–282. http://dx.doi.org/10.1016/S0092-8674(02)00741-9.
  • Pavletich NP. 1999. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287:821–828. http://dx.doi.org/10.1006/jmbi.1999.2640.
  • Endicott JA, Noble ME, Johnson LN. 2012. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81:587–613. http://dx.doi.org/10.1146/annurev-biochem-052410-090317.
  • Blume-Jensen P, Hunter T. 2001. Oncogenic kinase signalling. Nature 411:355–365. http://dx.doi.org/10.1038/35077225.
  • Berg JM, Tymoczko JL, Stryer L. 2002. Biochemistry, 5th ed. W. H. Freeman, New York, NY.
  • Berman DM, Wilkie TM, Gilman AG. 1996. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86:445–452. http://dx.doi.org/10.1016/S0092-8674(00)80117-8.
  • Watson N, Linder ME, Druey KM, Kehrl JH, Blumer KJ. 1996. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383:172–175. http://dx.doi.org/10.1038/383172a0.
  • Pawson T, Scott JD. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080. http://dx.doi.org/10.1126/science.278.5346.2075.
  • Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. 2009. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138. http://dx.doi.org/10.1016/j.str.2008.10.018.
  • Kornev AP, Taylor SS. 2009. Pseudokinases: functional insights gleaned from structure. Structure 17:5–7. http://dx.doi.org/10.1016/j.str.2008.12.005.
  • Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453. http://dx.doi.org/10.1016/j.immuni.2013.06.018.
  • Murphy JM, Lucet IS, Hildebrand JM, Tanzer MC, Young SN, Sharma P, Lessene G, Alexander WS, Babon JJ, Silke J, Czabotar PE. 2013. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochem. J. 457:369–377. http://dx.doi.org/10.1042/BJ20131270.
  • Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, Alessi DR, Clevers HC. 2003. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 22:3062–3072. http://dx.doi.org/10.1093/emboj/cdg292.
  • Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M, Alessi DR, van Aalten DM. 2009. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol. 7:e1000126. http://dx.doi.org/10.1371/journal.pbio.1000126.
  • Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. 2009. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326:1707–1711. http://dx.doi.org/10.1126/science.1178377.
  • Chadee DN, Yuasa T, Kyriakis JM. 2002. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol. Cell. Biol. 22:737–749. http://dx.doi.org/10.1128/MCB.22.3.737-749.2002.
  • Yarden Y, Sliwkowski MX. 2001. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2:127–137. http://dx.doi.org/10.1038/35052073.
  • Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE. 2013. Architecture and membrane interactions of the EGF receptor. Cell 152:557–569. http://dx.doi.org/10.1016/j.cell.2012.12.030.
  • Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. 2009. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. U. S. A. 106:21608–21613. http://dx.doi.org/10.1073/pnas.0912101106.
  • Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. 2011. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42:9–22. http://dx.doi.org/10.1016/j.molcel.2011.03.004.
  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. 2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149. http://dx.doi.org/10.1016/j.cell.2006.05.013.
  • Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134. http://dx.doi.org/10.1016/j.cell.2010.06.011.
  • Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, Chaudhuri S, Pujara K, Guillory J, Edgar KA, Janakiraman V, Scholz RP, Bowman KK, Lorenzo M, Li H, Wu J, Yuan W, Peters BA, Kan Z, Stinson J, Mak M, Modrusan Z, Eigenbrot C, Firestein R, Stern HM, Rajalingam K, Schaefer G, Merchant MA, Sliwkowski MX, de Sauvage FJ, Seshagiri S. 2013. Oncogenic ERBB3 mutations in human cancers. Cancer Cell 23:603–617. http://dx.doi.org/10.1016/j.ccr.2013.04.012.
  • Arteaga CL, Ramsey TT, Shawver LK, Guyer CA. 1997. Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site. J. Biol. Chem. 272:23247–23254. http://dx.doi.org/10.1074/jbc.272.37.23247.
  • Gan HK, Walker F, Burgess AW, Rigopoulos A, Scott AM, Johns TG. 2007. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers. Implications for combination therapy with monoclonal antibody 806. J. Biol. Chem. 282:2840–2850. http://dx.doi.org/10.1074/jbc.M605136200.
  • Lichtner RB, Menrad A, Sommer A, Klar U, Schneider MR. 2001. Signaling-inactive epidermal growth factor receptor/ligand complexes in intact carcinoma cells by quinazoline tyrosine kinase inhibitors. Cancer Res. 61:5790–5795.
  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R. 2005. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20:963–969. http://dx.doi.org/10.1016/j.molcel.2005.10.022.
  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. 2010. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430. http://dx.doi.org/10.1038/nature08902.
  • Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R. 2010. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221. http://dx.doi.org/10.1016/j.cell.2009.12.040.
  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S. 2010. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435. http://dx.doi.org/10.1038/nature08833.
  • Morrison DK, Cutler RE. 1997. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9:174–179. http://dx.doi.org/10.1016/S0955-0674(97)80060-9.
  • Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, Taylor SS, Shaw AS. 2011. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc. Natl. Acad. Sci. U. S. A. 108:6067–6072. http://dx.doi.org/10.1073/pnas.1102554108.
  • Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJ, Kornev AP, Taylor SS, Shaw AS. 2013. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036–1046. http://dx.doi.org/10.1016/j.cell.2013.07.046.
  • Joseph RE, Min L, Andreotti AH. 2007. The linker between SH2 and kinase domains positively regulates catalysis of the Tec family kinases. Biochemistry 46:5455–5462. http://dx.doi.org/10.1021/bi602512e.
  • Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. 2005. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13:861–871. http://dx.doi.org/10.1016/j.str.2005.03.012.
  • LaFevre-Bernt M, Sicheri F, Pico A, Porter M, Kuriyan J, Miller WT. 1998. Intramolecular regulatory interactions in the Src family kinase Hck probed by mutagenesis of a conserved tryptophan residue. J. Biol. Chem. 273:32129–32134. http://dx.doi.org/10.1074/jbc.273.48.32129.
  • Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. 1999. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18:2137–2148. http://dx.doi.org/10.1093/emboj/18.8.2137.
  • Lochhead PA, Sibbet G, Morrice N, Cleghon V. 2005. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121:925–936. http://dx.doi.org/10.1016/j.cell.2005.03.034.
  • Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V. 2006. A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol. Cell 24:627–633. http://dx.doi.org/10.1016/j.molcel.2006.10.009.
  • Cole A, Frame S, Cohen P. 2004. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J. 377:249–255. http://dx.doi.org/10.1042/BJ20031259.
  • Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J. 2002. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295:1291–1294. http://dx.doi.org/10.1126/science.1067289.
  • Bhattacharyya RP, Remenyi A, Good MC, Bashor CJ, Falick AM, Lim WA. 2006. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311:822–826. http://dx.doi.org/10.1126/science.1120941.
  • Mendrola JM, Shi F, Park JH, Lemmon MA. 2013. Receptor tyrosine kinases with intracellular pseudokinase domains. Biochem. Soc. Trans. 41:1029–1036. http://dx.doi.org/10.1042/BST20130104.
  • Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. 2012. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat. Struct. Mol. Biol. 19:754–759. http://dx.doi.org/10.1038/nsmb.2348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.