177
Views
21
CrossRef citations to date
0
Altmetric
Research Article

CKAP4 Regulates Cell Migration via the Interaction with and Recycling of Integrin

, &
Article: e00073-19 | Received 17 Feb 2019, Accepted 28 May 2019, Published online: 03 Mar 2023

REFERENCES

  • Schweizer A, Ericsson M, Bachi T, Griffiths G, Hauri HP. 1993. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J Cell Sci 104:671–683.
  • Schweizer A, Rohrer J, Slot JW, Geuze HJ, Kornfeld S. 1995. Reassessment of the subcellular localization of p63. J Cell Sci 108:2477–2485.
  • Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri HP. 2001. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J Cell Biol 153:1287–1300. https://doi.org/10.1083/jcb.153.6.1287.
  • Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA. 2010. Mechanisms determining the morphology of the peripheral ER. Cell 143:774–788. https://doi.org/10.1016/j.cell.2010.11.007.
  • Klopfenstein DR, Kappeler F, Hauri HP. 1998. A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J 17:6168–6177. https://doi.org/10.1093/emboj/17.21.6168.
  • Vedrenne C, Hauri HP. 2006. Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7:639–646. https://doi.org/10.1111/j.1600-0854.2006.00419.x.
  • Pepin G, Perron MP, Provost P. 2012. Regulation of human Dicer by the resident ER membrane protein CLIMP-63. Nucleic Acids Res 40:11603–11617. https://doi.org/10.1093/nar/gks903.
  • Karasawa T, Wang Q, David LL, Steyger PS. 2010. CLIMP-63 is a gentamicin-binding protein that is involved in drug-induced cytotoxicity. Cell Death Dis 1:e102. https://doi.org/10.1038/cddis.2010.80.
  • Razzaq TM, Bass R, Vines DJ, Werner F, Whawell SA, Ellis V. 2003. Functional regulation of tissue plasminogen activator on the surface of vascular smooth muscle cells by the type-II transmembrane protein p63 (CKAP4). J Biol Chem 278:42679–42685. https://doi.org/10.1074/jbc.M305695200.
  • Gupta N, Manevich Y, Kazi AS, Tao JQ, Fisher AB, Bates SR. 2006. Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 291:L436–L446. https://doi.org/10.1152/ajplung.00415.2005.
  • Kimura H, Fumoto K, Shojima K, Nojima S, Osugi Y, Tomihara H, Eguchi H, Shintani Y, Endo H, Inoue M, Doki Y, Okumura M, Morii E, Kikuchi A. 2016. CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Invest 126:2689–2705. https://doi.org/10.1172/JCI84658.
  • Niehrs C. 2006. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481. https://doi.org/10.1038/sj.onc.1210054.
  • Shinno N, Kimura H, Sada R, Takiguchi S, Mori M, Fumoto K, Doki Y, Kikuchi A. 2018. Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene 37:3471–3484. https://doi.org/10.1038/s41388-018-0179-2.
  • Kajiwara C, Fumoto K, Kimura H, Nojima S, Asano K, Odagiri K, Yamasaki M, Hikita H, Takehara T, Doki Y, Morii E, Kikuchi A. 2018. p63-dependent Dickkopf3 expression promotes esophageal cancer cell proliferation via CKAP4. Cancer Res 78:6107–6120. https://doi.org/10.1158/0008-5472.CAN-18-1749.
  • Kikuchi A, Fumoto K, Kimura H. 2017. The Dickkopf1-cytoskeleton-associated protein 4 axis creates a novel signalling pathway and may represent a molecular target for cancer therapy. Br J Pharmacol 174:4651–4665. https://doi.org/10.1111/bph.13863.
  • Kimura H, Yamamoto H, Harada T, Fumoto K, Osugi Y, Sada R, Maehara N, Hikita H, Mori S, Eguchi H, Ikawa M, Takehara T, Kikuchi A. 2019. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res 25:1936–1947. https://doi.org/10.1158/1078-0432.CCR-18-2124.
  • Stambolic V, Woodgett JR. 2006. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16:461–466. https://doi.org/10.1016/j.tcb.2006.07.001.
  • Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–1274. https://doi.org/10.1016/j.cell.2007.06.009.
  • Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M. 2005. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9:389–402. https://doi.org/10.1016/j.devcel.2005.08.001.
  • Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. 2001. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 61:589–593.
  • Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY, Slamon DJ. 2003. Overexpression of AKT2/protein kinase Bb leads to up-regulation of b1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63:196–206.
  • Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A. 2005. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20:539–550. https://doi.org/10.1016/j.molcel.2005.10.033.
  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. 2003. Cell migration: integrating signals from front to back. Science 302:1704–1709. https://doi.org/10.1126/science.1092053.
  • Parsons JT, Horwitz AR, Schwartz MA. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643. https://doi.org/10.1038/nrm2957.
  • Paul NR, Jacquemet G, Caswell PT. 2015. Endocytic trafficking of integrins in cell migration. Curr Biol 25:R1092–1105. https://doi.org/10.1016/j.cub.2015.09.049.
  • Bridgewater RE, Norman JC, Caswell PT. 2012. Integrin trafficking at a glance. J Cell Sci 125:3695–3701. https://doi.org/10.1242/jcs.095810.
  • Valdembri D, Serini G. 2012. Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol 24:582–591. https://doi.org/10.1016/j.ceb.2012.08.004.
  • De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J. 2015. Integrin traffic–the update. J Cell Sci 128:839–852. https://doi.org/10.1242/jcs.161653.
  • Akiyama SK, Yamada SS, Yamada KM. 1989. Analysis of the role of glycosylation of the human fibronectin receptor. J Biol Chem 264:18011–18018.
  • Theisen U, Straube E, Straube A. 2012. Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions. Dev Cell 23:1153–1166. https://doi.org/10.1016/j.devcel.2012.11.005.
  • Kim DH, Wirtz D. 2013. Focal adhesion size uniquely predicts cell migration. FASEB J 27:1351–1361. https://doi.org/10.1096/fj.12-220160.
  • Bouvard D, Pouwels J, De Franceschi N, Ivaska J. 2013. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 14:430–442. https://doi.org/10.1038/nrm3599.
  • Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. https://doi.org/10.1016/S0092-8674(02)00971-6.
  • Steinberg F, Heesom KJ, Bass MD, Cullen PJ. 2012. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol 197:219–230. https://doi.org/10.1083/jcb.201111121.
  • Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras MC, Takagi J, Lukacs GL, Pause A. 2015. Interplay of endosomal pH and ligand occupancy in integrin a5b1 ubiquitination, endocytic sorting, and cell migration. Cell Rep 13:599–609. https://doi.org/10.1016/j.celrep.2015.09.024.
  • Hase H, Jingushi K, Ueda Y, Kitae K, Egawa H, Ohshio I, Kawakami R, Kashiwagi Y, Tsukada Y, Kobayashi T, Nakata W, Fujita K, Uemura M, Nonomura N, Tsujikawa K. 2014. LOXL2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC. Mol Cancer Res 12:1807–1817. https://doi.org/10.1158/1541-7786.MCR-14-0233.
  • Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P, Norman JC. 2004. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of avb3 and a5b1 integrins. Mol Cell Biol 24:1505–1515. https://doi.org/10.1128/MCB.24.4.1505-1515.2004.
  • Bottcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fassler R. 2012. Sorting nexin 17 prevents lysosomal degradation of b1 integrins by binding to the b1-integrin tail. Nat Cell Biol 14:584–592. https://doi.org/10.1038/ncb2501.
  • Chen L, You C, Jin X, Zhou L, Huang L, Wang Y. 2018. Cytoskeleton-associated protein 4 is a novel serodiagnostic marker for esophageal squamous-cell carcinoma. Onco Targets Ther 11:8221–8226. https://doi.org/10.2147/OTT.S183790.
  • Yanagita K, Nagashio R, Jiang SX, Kuchitsu Y, Hachimura K, Ichinoe M, Igawa S, Fukuda E, Goshima N, Satoh Y, Murakumo Y, Saegusa M, Sato Y. 2018. Cytoskeleton-associated protein 4 is a novel serodiagnostic marker for lung cancer. Am J Pathol 188:1328–1333. https://doi.org/10.1016/j.ajpath.2018.03.007.
  • Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerod L, Stenmark H. 2010. Ubiquitination of a5b1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 19:148–159. https://doi.org/10.1016/j.devcel.2010.06.010.
  • Margadant C, Monsuur HN, Norman JC, Sonnenberg A. 2011. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 23:607–614. https://doi.org/10.1016/j.ceb.2011.08.005.
  • Morgan MR, Byron A, Humphries MJ, Bass MD. 2009. Giving off mixed signals–distinct functions of a5b1 and avb3 integrins in regulating cell behaviour. IUBMB Life 61:731–738. https://doi.org/10.1002/iub.200.
  • Roca-Cusachs P, Gauthier NC, Del Rio A, Sheetz MP. 2009. Clustering of a5b1 integrins determines adhesion strength whereas avb3 and talin enable mechanotransduction. Proc Natl Acad Sci U S A 106:16245–16250. https://doi.org/10.1073/pnas.0902818106.
  • White DP, Caswell PT, Norman JC. 2007. αvb3 and a5b1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525. https://doi.org/10.1083/jcb.200609004.
  • Shi F, Sottile J. 2008. Caveolin-1-dependent b1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 121:2360–2371. https://doi.org/10.1242/jcs.014977.
  • Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J. 1989. Regulation of cell adhesion receptors by transforming growth factor-b. Concomitant regulation of integrins that share a common b1 subunit. J Biol Chem 264:380–388.
  • Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B. 2011. Integrin a5b1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 124:369–383. https://doi.org/10.1242/jcs.071985.
  • Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC. 2007. Rab25 associates with a5b1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13:496–510. https://doi.org/10.1016/j.devcel.2007.08.012.
  • Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, Peter ME, Ramakrishnan V, Yamada SD, Lengyel E. 2008. Loss of E-cadherin promotes ovarian cancer metastasis via a5-integrin, which is a therapeutic target. Cancer Res 68:2329–2339. https://doi.org/10.1158/0008-5472.CAN-07-5167.
  • Barkan D, Chambers AF. 2011. β1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 17:7219–7223. https://doi.org/10.1158/1078-0432.CCR-11-0642.
  • Li SX, Liu LJ, Dong LW, Shi HG, Pan YF, Tan YX, Zhang J, Zhang B, Ding ZW, Jiang TY, Hu HP, Wang HY. 2014. CKAP4 inhibited growth and metastasis of hepatocellular carcinoma through regulating EGFR signaling. Tumour Biol 35:7999–8005. https://doi.org/10.1007/s13277-014-2000-3.
  • Lyu Q, Xu S, Lyu Y, Choi M, Christie CK, Slivano OJ, Rahman A, Jin ZG, Long X, Xu Y, Miano JM. 2019. SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 116:546–555. https://doi.org/10.1073/pnas.1810729116.
  • Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261.
  • Sato A, Kayama H, Shojima K, Matsumoto S, Koyama H, Minami Y, Nojima S, Morii E, Honda H, Takeda K, Kikuchi A. 2015. The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-gamma in colitis. Sci Rep 5:10536. https://doi.org/10.1038/srep10536.
  • Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A. 2006. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66:10439–10448. https://doi.org/10.1158/0008-5472.CAN-06-2359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.