206
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Autism-Associated Vigilin Depletion Impairs DNA Damage Repair

, , , ORCID Icon, , , , , , , , , & ORCID Icon show all
Article: e00082-21 | Received 27 Feb 2021, Accepted 28 Apr 2021, Published online: 03 Mar 2023

REFERENCES

  • Felder B, Radlwimmer B, Benner A, Mincheva A, Todt G, Beyer KS, Schuster C, Bolte S, Schmotzer G, Klauck SM, Poustka F, Lichter P, Poustka A. 2009. FARP2, HDLBP and PASK are downregulated in a patient with autism and 2q37.3 deletion syndrome. Am J Med Genet 149A:952–959. https://doi.org/10.1002/ajmg.a.32779.
  • O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O'Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J. 2012. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–1622. https://doi.org/10.1126/science.1227764.
  • O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE. 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250. https://doi.org/10.1038/nature10989.
  • Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M, Karczewski KJ, Cutler DJ, Devlin B, Roeder K, Buxbaum JD, Neale BM, MacArthur DG, Wall DP, Robinson EB, Daly MJ. 2017. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 49:504–510. https://doi.org/10.1038/ng.3789.
  • Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221. https://doi.org/10.1038/nature13908.
  • Woo HH, Yi X, Lamb T, Menzl I, Baker T, Shapiro DJ, Chambers SK. 2011. Posttranscriptional suppression of proto-oncogene c-fms expression by vigilin in breast cancer. Mol Cell Biol 31:215–225. https://doi.org/10.1128/MCB.01031-10.
  • Courchet V, Roberts AJ, Meyer-Dilhet G, Del Carmine P, Lewis TL, Jr, Polleux F, Courchet J. 2018. Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice. Nat Commun 9:4289. https://doi.org/10.1038/s41467-018-06584-5.
  • Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, Van Eylen L, Liebhaber SA, Devriendt K, Balschun D, Arckens L, Creemers JW, D'Hooge R. 2013. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis 51:144–151. https://doi.org/10.1016/j.nbd.2012.11.004.
  • Wang S, Tan N, Zhu X, Yao M, Wang Y, Zhang X, Xu Z. 2018. Sh3rf2 haploinsufficiency leads to unilateral neuronal development deficits and autistic-like behaviors in mice. Cell Rep 25:2963–2971.e6. https://doi.org/10.1016/j.celrep.2018.11.044.
  • Bagni C, Zukin RS. 2019. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101:1070–1088. https://doi.org/10.1016/j.neuron.2019.02.041.
  • Cheng MH, Jansen RP. 2017. A jack of all trades: the RNA-binding protein vigilin. Wiley Interdiscip Rev RNA 8:e1448. https://doi.org/10.1002/wrna.1448.
  • Burd CG, Dreyfuss G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621. https://doi.org/10.1126/science.8036511.
  • Kugler S, Grunweller A, Probst C, Klinger M, Muller PK, Kruse C. 1996. Vigilin contains a functional nuclear localisation sequence and is present in both the cytoplasm and the nucleus. FEBS Lett 382:330–334. https://doi.org/10.1016/0014-5793(96)00204-9.
  • Kanamori H, Dodson RE, Shapiro DJ. 1998. In vitro genetic analysis of the RNA binding site of vigilin, a multi-KH-domain protein. Mol Cell Biol 18:3991–4003. https://doi.org/10.1128/MCB.18.7.3991.
  • Dodson RE, Shapiro DJ. 1997. Vigilin, a ubiquitous protein with 14 K homology domains, is the estrogen-inducible vitellogenin mRNA 3'-untranslated region-binding protein. J Biol Chem 272:12249–12252. https://doi.org/10.1074/jbc.272.19.12249.
  • Weber V, Wernitznig A, Hager G, Harata M, Frank P, Wintersberger U. 1997. Purification and nucleic-acid-binding properties of a Saccharomyces cerevisiae protein involved in the control of ploidy. Eur J Biochem 249:309–317. https://doi.org/10.1111/j.1432-1033.1997.00309.x.
  • Wintersberger U, Kuhne C, Karwan A. 1995. Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy. Yeast 11:929–944. https://doi.org/10.1002/yea.320111004.
  • Hirschmann WD, Westendorf H, Mayer A, Cannarozzi G, Cramer P, Jansen RP. 2014. Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast. Nucleic Acids Res 42:4043–4055. https://doi.org/10.1093/nar/gkt1392.
  • Cunningham KS, Dodson RE, Nagel MA, Shapiro DJ, Schoenberg DR. 2000. Vigilin binding selectively inhibits cleavage of the vitellogenin mRNA 3'-untranslated region by the mRNA endonuclease polysomal ribonuclease 1. Proc Natl Acad Sci U S A 97:12498–12502. https://doi.org/10.1073/pnas.220425497.
  • Liu Q, Yang B, Xie X, Wei L, Liu W, Yang W, Ge Y, Zhu Q, Zhang J, Jiang L, Yu X, Shen W, Li R, Shi X, Li B, Qin Y. 2014. Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J 281:2713–2725. https://doi.org/10.1111/febs.12816.
  • Wilson LC, Leverton K, Oude Luttikhuis ME, Oley CA, Flint J, Wolstenholme J, Duckett DP, Barrow MA, Leonard JV, Read AP. 1995. Brachydactyly and mental retardation: an Albright hereditary osteodystrophy-like syndrome localized to 2q37. Am J Hum Genet 56:400–407.
  • Phelan MC, Rogers RC, Clarkson KB, Bowyer FP, Levine MA, Estabrooks LL, Severson MC, Dobyns WB. 1995. Albright hereditary osteodystrophy and del(2) (q37.3) in four unrelated individuals. Am J Med Genet 58:1–7. https://doi.org/10.1002/ajmg.1320580102.
  • Huertas D, Cortes A, Casanova J, Azorin F. 2004. Drosophila DDP1, a multi-KH-domain protein, contributes to centromeric silencing and chromosome segregation. Curr Biol 14:1611–1620. https://doi.org/10.1016/j.cub.2004.09.024.
  • Zhou J, Wang Q, Chen LL, Carmichael GG. 2008. On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin. RNA 14:1773–1781. https://doi.org/10.1261/rna.1036308.
  • Cortes A, Huertas D, Fanti L, Pimpinelli S, Marsellach FX, Pina B, Azorin F. 1999. DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy. EMBO J 18:3820–3833. https://doi.org/10.1093/emboj/18.13.3820.
  • Farooq Z, Abdullah E, Banday S, Ganai SA, Rashid R, Mushtaq A, Rashid S, Altaf M. 2019. Vigilin protein Vgl1 is required for heterochromatin-mediated gene silencing in Schizosaccharomyces pombe. J Biol Chem 294:18029–18040. https://doi.org/10.1074/jbc.RA119.009262.
  • Dinant C, Luijsterburg MS. 2009. The emerging role of HP1 in the DNA damage response. Mol Cell Biol 29:6335–6340. https://doi.org/10.1128/MCB.01048-09.
  • Sharma GG, Hwang KK, Pandita RK, Gupta A, Dhar S, Parenteau J, Agarwal M, Worman HJ, Wellinger RJ, Pandita TK. 2003. Human heterochromatin protein 1 isoforms HP1(Hsalpha) and HP1(Hsbeta) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 23:8363–8376. https://doi.org/10.1128/MCB.23.22.8363-8376.2003.
  • Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LH, Houtsmuller AB, Verschure PJ, van Driel R. 2009. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185:577–586. https://doi.org/10.1083/jcb.200810035.
  • Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti Roti JL, Lieberman HB, Pandita TK. 2006. Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol 26:1850–1864. https://doi.org/10.1128/MCB.26.5.1850-1864.2006.
  • Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. 2020. Role of HP1beta during spermatogenesis and DNA replication. Chromosoma 129:215–226. https://doi.org/10.1007/s00412-020-00739-4.
  • Negrini S, Gorgoulis VG, Halazonetis TD. 2010. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228. https://doi.org/10.1038/nrm2858.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013.
  • Cann KL, Dellaire G. 2011. Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol 89:45–60. https://doi.org/10.1139/O10-113.
  • Agarwal M, Pandita S, Hunt CR, Gupta A, Yue X, Khan S, Pandita RK, Pratt D, Shay JW, Taylor JS, Pandita TK. 2008. Inhibition of telomerase activity enhances hyperthermia-mediated radiosensitization. Cancer Res 68:3370–3378. https://doi.org/10.1158/0008-5472.CAN-07-5831.
  • Pandita TK. 2001. The role of ATM in telomere structure and function. Radiat Res 156:642–647.2.0.CO;2]. https://doi.org/10.1667/0033-7587(2001)156[0642:TROAIT]2.0.CO;2.
  • Pandita TK. 2002. ATM function and telomere stability. Oncogene 21:611–618. https://doi.org/10.1038/sj.onc.1205060.
  • Deng Y, Chan SS, Chang S. 2008. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458. https://doi.org/10.1038/nrc2393.
  • Prescott J, Wentzensen IM, Savage SA, De Vivo I. 2012. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res 730:75–84. https://doi.org/10.1016/j.mrfmmm.2011.06.009.
  • Pandita TK, Geard CR. 1996. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness. Radiat Res 145:730–739. https://doi.org/10.2307/3579364.
  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK. 2005. Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305. https://doi.org/10.1128/MCB.25.12.5292-5305.2005.
  • Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK. 2004. Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24:899–911. https://doi.org/10.1128/MCB.24.2.899-911.2004.
  • Smilenov LB, Dhar S, Pandita TK. 1999. Altered telomere nuclear matrix interactions and nucleosomal periodicity in ataxia telangiectasia cells before and after ionizing radiation treatment. Mol Cell Biol 19:6963–6971. https://doi.org/10.1128/MCB.19.10.6963.
  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895. https://doi.org/10.1016/S0960-9822(00)00610-2.
  • Pandita TK, Richardson C. 2009. Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 37:1363–1377. https://doi.org/10.1093/nar/gkn1071.
  • Scott SP, Pandita TK. 2006. The cellular control of DNA double-strand breaks. J Cell Biochem 99:1463–1475. https://doi.org/10.1002/jcb.21067.
  • Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK. 2013. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 179:383–392. https://doi.org/10.1667/RR3308.2.
  • Altaf M, Saksouk N, Cote J. 2007. Histone modifications in response to DNA damage. Mutat Res 618:81–90. https://doi.org/10.1016/j.mrfmmm.2006.09.009.
  • Altaf M, Auger A, Covic M, Cote J. 2009. Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 87:35–50. https://doi.org/10.1139/O08-140.
  • Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, Wesemann DR, Lee JE, Tubbs A, Sleckman BP, Daniel JA, Ge K, Alt FW, Fernandez-Capetillo O, Nussenzweig MC, Nussenzweig A. 2013. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153:1266–1280. https://doi.org/10.1016/j.cell.2013.05.023.
  • Daley JM, Sung P. 2014. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34:1380–1388. https://doi.org/10.1128/MCB.01639-13.
  • Callen E, Zong D, Wu W, Wong N, Stanlie A, Ishikawa M, Pavani R, Dumitrache LC, Byrum AK, Mendez-Dorantes C, Martinez P, Canela A, Maman Y, Day A, Kruhlak MJ, Blasco MA, Stark JM, Mosammaparast N, McKinnon PJ, Nussenzweig A. 2020. 53BP1 enforces distinct pre- and post-resection blocks on homologous recombination. Mol Cell 77:26–38.e7. https://doi.org/10.1016/j.molcel.2019.09.024.
  • Jasin M. 2002. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993. https://doi.org/10.1038/sj.onc.1206176.
  • Jasin M, Rothstein R. 2013. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740. https://doi.org/10.1101/cshperspect.a012740.
  • Singh DK, Pandita RK, Singh M, Chakraborty S, Hambarde S, Ramnarain D, Charaka V, Ahmed KM, Hunt CR, Pandita TK. 2018. MOF suppresses replication stress and contributes to resolution of stalled replication forks. Mol Cell Biol 38:e00484-17. https://doi.org/10.1128/MCB.00484-17.
  • Chakraborty S, Pandita RK, Hambarde S, Mattoo AR, Charaka V, Ahmed KM, Iyer SP, Hunt CR, Pandita TK. 2018. SMARCAD1 phosphorylation and ubiquitination are required for resection during DNA double-strand break repair. iScience 2:123–135. https://doi.org/10.1016/j.isci.2018.03.016.
  • Horikoshi N, Sharma D, Leonard F, Pandita RK, Charaka VK, Hambarde S, Horikoshi NT, Gaur Khaitan P, Chakraborty S, Cote J, Godin B, Hunt CR, Pandita TK. 2019. Pre-existing H4K16ac levels in euchromatin drive DNA repair by homologous recombination in S-phase. Commun Biol 2:253. https://doi.org/10.1038/s42003-019-0498-z.
  • Hunt CR, Pandita TK. 2019. “What’s past is prologue”: pre-existing epigenetic transcriptional marks may also influence DNA repair pathway choice. Radiat Res 192:577–578. https://doi.org/10.1667/RR15541.1.
  • Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK. 2010. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30:3582–3595. https://doi.org/10.1128/MCB.01476-09.
  • Xie M, Park D, You S, Li R, Owonikoko TK, Wang Y, Doetsch PW, Deng X. 2015. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res 43:960–972. https://doi.org/10.1093/nar/gku1358.
  • Zhou Y, Caron P, Legube G, Paull TT. 2014. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res 42:e19. https://doi.org/10.1093/nar/gkt1309.
  • Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC, Jasin M, Masson JY. 2006. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 25:222–231. https://doi.org/10.1038/sj.emboj.7600914.
  • Pierce AJ, Johnson RD, Thompson LH, Jasin M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638. https://doi.org/10.1101/gad.13.20.2633.
  • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542. https://doi.org/10.1016/j.cell.2011.03.041.
  • Bártová E, Malyšková B, Komůrková D, Legartová S, Suchánková J, Krejčí J, Kozubek S. 2017. Function of heterochromatin protein 1 during DNA repair. Protoplasma 254:1233–1240. https://doi.org/10.1007/s00709-017-1090-3.
  • Narita T, Weinert BT, Choudhary C. 2019. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174. https://doi.org/10.1038/s41580-018-0081-3.
  • Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, Beltrao-Braga P, Trujillo CA, Mendes APD, Padmanabhan K, Nunez Y, Ou J, Ghosh H, Wright R, Brennand K, Pierce K, Eichenfield L, Pramparo T, Eyler L, Barnes CC, Courchesne E, Geschwind DH, Gage FH, Wynshaw-Boris A, Muotri AR. 2017. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry 22:820–835. https://doi.org/10.1038/mp.2016.95.
  • Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, Marchetto MC, Alt FW, Gage FH. 2020. Increased neural progenitor proliferation in a hiPSC model of autism induces replication stress-associated genome instability. Cell Stem Cell 26:221–233.e6. https://doi.org/10.1016/j.stem.2019.12.013.
  • Gagne JP, Gagne P, Hunter JM, Bonicalzi ME, Lemay JF, Kelly I, Le Page C, Provencher D, Mes-Masson AM, Droit A, Bourgais D, Poirier GG. 2005. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Mol Cell Biochem 275:25–55. https://doi.org/10.1007/s11010-005-7556-1.
  • Kim NS, Hahn Y, Oh JH, Lee JY, Oh KJ, Kim JM, Park HS, Kim S, Song KS, Rho SM, Yoo HS, Kim YS. 2004. Gene cataloging and expression profiling in human gastric cancer cells by expressed sequence tags. Genomics 83:1024–1045. https://doi.org/10.1016/j.ygeno.2003.12.002.
  • Robinson WS. 1992. The role of hepatitis B virus in the development of primary hepatocellular carcinoma. Part I. J Gastroenterol Hepatol 7:622–638. https://doi.org/10.1111/j.1440-1746.1992.tb01497.x.
  • Wadle A, Mischo A, Henrich PP, Stenner-Lieven F, Scherer C, Imig J, Petersen G, Pfreundschuh M, Renner C. 2005. Characterization of Hap/BAG-1 variants as RP1 binding proteins with antiapoptotic activity. Int J Cancer 117:896–904. https://doi.org/10.1002/ijc.21259.
  • Yang WL, Wei L, Huang WQ, Li R, Shen WY, Liu JY, Xu JM, Li B, Qin Y. 2014. Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep 31:2328–2334. https://doi.org/10.3892/or.2014.3111.
  • Kinzler KW, Vogelstein B. 1997. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386:761–763. https://doi.org/10.1038/386761a0.
  • Bacolla A, Sengupta S, Ye Z, Yang C, Mitra J, De-Paula RB, Hegde ML, Ahmed Z, Mort M, Cooper DN, Mitra S, Tainer JA. 2021. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Res 49:221–243. https://doi.org/10.1093/nar/gkaa1120.
  • Dutertre M, Vagner S. 2017. DNA-damage response RNA-binding proteins (DDRBPs): perspectives from a new class of proteins and their RNA targets. J Mol Biol 429:3139–3145. https://doi.org/10.1016/j.jmb.2016.09.019.
  • Dutertre M, Lambert S, Carreira A, Amor-Gueret M, Vagner S. 2014. DNA damage: RNA-binding proteins protect from near and far. Trends Biochem Sci 39:141–149. https://doi.org/10.1016/j.tibs.2014.01.003.
  • Scott DD, Trahan C, Zindy PJ, Aguilar LC, Delubac MY, Van Nostrand EL, Adivarahan S, Wei KE, Yeo GW, Zenklusen D, Oeffinger M. 2017. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res 45:12509–12528. https://doi.org/10.1093/nar/gkx963.
  • Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C. 2012. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46:212–225. https://doi.org/10.1016/j.molcel.2012.01.026.
  • Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ. 2012. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 14:318–328. https://doi.org/10.1038/ncb2426.
  • Mattoo AR, Pandita RK, Chakraborty S, Charaka V, Mujoo K, Hunt CR, Pandita TK. 2017. MCL-1 depletion impairs DNA double-strand break repair and reinitiation of stalled DNA replication forks. Mol Cell Biol 37:e00535-16. https://doi.org/10.1128/MCB.00535-16.
  • Pandita TK, Pathak S, Geard CR. 1995. Chromosome end associations, telomeres and telomerase activity in ataxia telangiectasia cells. Cytogenet Cell Genet 71:86–93. https://doi.org/10.1159/000134069.
  • Gupta A, Hunt CR, Hegde ML, Chakraborty S, Udayakumar D, Horikoshi N, Singh M, Ramnarain DB, Hittelman WN, Namjoshi S, Asaithamby A, Hazra TK, Ludwig T, Pandita RK, Tyler JK, Pandita TK. 2014. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 8:177–189. https://doi.org/10.1016/j.celrep.2014.05.044.
  • Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J. 2007. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28:1002–1014. https://doi.org/10.1016/j.molcel.2007.12.002.
  • Torres MJ, Pandita RK, Kulak O, Kumar R, Formstecher E, Horikoshi N, Mujoo K, Hunt CR, Zhao Y, Lum L, Zaman A, Yeaman C, White MA, Pandita TK. 2015. Role of the exocyst complex component Sec6/8 in genomic stability. Mol Cell Biol 35:3633–3645. https://doi.org/10.1128/MCB.00768-15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.