112
Views
46
CrossRef citations to date
0
Altmetric
Article

Differential Properties of Transcriptional Complexes Formed by the CoREST Family

, , , , , , & show all
Pages 2760-2770 | Received 15 Jan 2014, Accepted 07 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G. 1999. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. U. S. A. 96:9873–9878. http://dx.doi.org/10.1073/pnas.96.17.9873.
  • Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, Howard BH. 2001. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276:6817–6824. http://dx.doi.org/10.1074/jbc.M007372200.
  • You A, Tong JK, Grozinger CM, Schreiber SL. 2001. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc. Natl. Acad. Sci. U. S. A. 98:1454–1458. http://dx.doi.org/10.1073/pnas.98.4.1454.
  • Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. 2005. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657. http://dx.doi.org/10.1016/j.cell.2005.03.013.
  • Ballas N, Mandel G. 2005. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15:500–506. http://dx.doi.org/10.1016/j.conb.2005.08.015.
  • Abrajano JJ, Qureshi IA, Gokhan S, Molero AE, Zheng D, Bergman A, Mehler MF. 2010. Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc. Natl. Acad. Sci. U. S. A. 107:16685–16690. http://dx.doi.org/10.1073/pnas.0906917107.
  • Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. 2009. REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One 4:e7936. http://dx.doi.org/10.1371/journal.pone.0007936.
  • Welcker JE, Hernandez-Miranda LR, Paul FE, Jia S, Ivanov A, Selbach M, Birchmeier C. 2013. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development 140:4947–4958. http://dx.doi.org/10.1242/dev.097642.
  • Saleque S, Kim J, Rooke HM, Orkin SH. 2007. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27:562–572. http://dx.doi.org/10.1016/j.molcel.2007.06.039.
  • Yao H, Goldman DC, Nechiporuk T, Kawane S, McWeeney SK, Tyner JW, Fan G, Kerenyi MA, Orkin SH, Fleming WH, Mandel G. 20 March 2014. The co-repressor Rcor1 is essential for murine erythropoiesis. Blood
  • Gomez AV, Galleguillos D, Maass JC, Battaglioli E, Kukuljan M, Andres ME. 2008. CoREST represses the heat shock response mediated by HSF1. Mol. Cell 31:222–231. http://dx.doi.org/10.1016/j.molcel.2008.06.015.
  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. 2009. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59. http://dx.doi.org/10.1016/j.cell.2009.01.038.
  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953. http://dx.doi.org/10.1016/j.cell.2004.12.012.
  • Lee MG, Wynder C, Cooch N, Shiekhattar R. 2005. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435. http://dx.doi.org/10.1038/nature04021.
  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. 2005. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19:857–864. http://dx.doi.org/10.1016/j.molcel.2005.08.027.
  • Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, Burger C, Moniwa M, Davie JR, Bowers WJ, Federoff HJ, Rose DW, Rosenfeld MG, Brehm P, Mandel G. 2001. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31:353–365. http://dx.doi.org/10.1016/S0896-6273(01)00371-3.
  • Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H. 2006. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell 23:377–387. http://dx.doi.org/10.1016/j.molcel.2006.07.012.
  • Dallman JE, Allopenna J, Bassett A, Travers A, Mandel G. 2004. A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammalian nervous system formation. J. Neurosci. 24:7186–7193. http://dx.doi.org/10.1523/JNEUROSCI.0238-04.2004.
  • de la Calle-Mustienes E, Modolell J, Gomez-Skarmeta JL. 2002. The Xiro-repressed gene CoREST is expressed in Xenopus neural territories. Mech. Dev. 110:209–211. http://dx.doi.org/10.1016/S0925-4773(01)00565-2.
  • Jarriault S, Greenwald I. 2002. Suppressors of the egg-laying defective phenotype of sel-12 presenilin mutants implicate the CoREST corepressor complex in LIN-12/Notch signaling in C. elegans. Genes Dev. 16:2713–2728. http://dx.doi.org/10.1101/gad.1022402.
  • Domanitskaya E, Schupbach T. 2012. CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster. J. Cell Sci. 125:399–410. http://dx.doi.org/10.1242/jcs.089797.
  • Baudet ML, Zivraj KH, Abreu-Goodger C, Muldal A, Armisen J, Blenkiron C, Goldstein LD, Miska EA, Holt CE. 2012. miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat. Neurosci. 15:29–38. http://dx.doi.org/10.1038/nn.2979.
  • Ding Z, Gillespie LL, Paterno GD. 2003. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Mol. Cell. Biol. 23:250–258. http://dx.doi.org/10.1128/MCB.23.1.250-258.2003.
  • Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. 2006. Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26:6395–6402. http://dx.doi.org/10.1128/MCB.00723-06.
  • Wang L, Charroux B, Kerridge S, Tsai CC. 2008. Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep. 9:555–562. http://dx.doi.org/10.1038/embor.2008.67.
  • Forneris F, Binda C, Adamo A, Battaglioli E, Mattevi A. 2007. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282:20070–20074. http://dx.doi.org/10.1074/jbc.C700100200.
  • Tontsch S, Zach O, Bauer HC. 2001. Identification and localization of M-CoREST (1A13), a mouse homologue of the human transcriptional co-repressor CoREST, in the developing mouse CNS. Mech. Dev. 108:165–169. http://dx.doi.org/10.1016/S0925-4773(01)00477-4.
  • Zeng W, Kong Q, Li C, Mao B. 2010. Xenopus RCOR2 (REST corepressor 2) interacts with ZMYND8, which is involved in neural differentiation. Biochem. Biophys. Res. Commun. 394:1024–1029. http://dx.doi.org/10.1016/j.bbrc.2010.03.115.
  • Yang P, Wang Y, Chen J, Li H, Kang L, Zhang Y, Chen S, Zhu B, Gao S. 2011. RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 29:791–801. http://dx.doi.org/10.1002/stem.634.
  • Galleguillos D, Fuentealba JA, Gomez LM, Saver M, Gomez A, Nash K, Burger C, Gysling K, Andres ME. 2010. Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. J. Neurochem. 114:1158–1167. http://dx.doi.org/10.1111/j.1471-4159.2010.06841.x.
  • Toffolo E, Rusconi F, Paganini L, Tortorici M, Pilotto S, Heise C, Verpelli C, Tedeschi G, Maffioli E, Sala C, Mattevi A, Battaglioli E. 2014. Phosphorylation of neuronal lysine-specific demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. J. Neurochem. 128:603–616. http://dx.doi.org/10.1111/jnc.12457.
  • Campos-Melo D, Quiroz G, Noches V, Gysling K, Forray MI, Andres ME. 2011. Repeated immobilization stress increases nur77 expression in the bed nucleus of the stria terminalis. Neurotox. Res. 20:289–300. http://dx.doi.org/10.1007/s12640-011-9243-1.
  • Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A. 2005. Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280:41360–41365. http://dx.doi.org/10.1074/jbc.M509549200.
  • Leslie C, Landree E, Collazo-Davila C, Bengu E, Grozea D, Marks LD. 1999. Electron crystallography in surface structure analysis. Microsc. Res. Tech. 46:160–177. http://dx.doi.org/10.1002/(SICI)1097-0029(19990801)46:3<160::AID-JEMT2>3.0.CO;2-#.
  • Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53:240–255. http://dx.doi.org/10.1107/S0907444996012255.
  • Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60:2126–2132. http://dx.doi.org/10.1107/S0907444904019158.
  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193. http://dx.doi.org/10.1038/43710.
  • Watson PJ, Fairall L, Santos GM, Schwabe JW. 2012. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340.
  • Presgraves DC. 2005. Evolutionary genomics: new genes for new jobs. Curr. Biol. 15:R52–R53. http://dx.doi.org/10.1016/j.cub.2004.12.053.
  • Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Chen R, Li W, Wang Y, O'Malley BW, Qin J. 2011. Analysis of the human endogenous coregulator complexome. Cell 145:787–799. http://dx.doi.org/10.1016/j.cell.2011.05.006.
  • Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L, Schwabe JW. 2013. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 51:57–67. http://dx.doi.org/10.1016/j.molcel.2013.05.020.
  • Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. 2009. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol. Cell 34:145–154. http://dx.doi.org/10.1016/j.molcel.2009.03.013.
  • Malik S, Roeder RG. 2010. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11:761–772. http://dx.doi.org/10.1038/nrg2901.
  • Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215. http://dx.doi.org/10.1016/j.neuron.2007.06.019.
  • Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A. 2009. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 284:17775–17782. http://dx.doi.org/10.1074/jbc.M109.003087.
  • Forneris F, Binda C, Dall'Aglio A, Fraaije MW, Battaglioli E, Mattevi A. 2006. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J. Biol. Chem. 281:35289–35295. http://dx.doi.org/10.1074/jbc.M607411200.
  • Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. 2005. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579:2203–2207. http://dx.doi.org/10.1016/j.febslet.2005.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.