68
Views
150
CrossRef citations to date
0
Altmetric
Article

Prostate-Specific Membrane Antigen Regulates Angiogenesis by Modulating Integrin Signal Transduction

, , , , &
Pages 5310-5324 | Received 13 Jan 2006, Accepted 01 May 2006, Published online: 27 Mar 2023

REFERENCES

  • Anilkumar, G., S. A. Rajasekaran, S. Wang, O. Hankinson, N. H. Bander, and A. K. Rajasekaran. 2003. Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity. Cancer Res. 63:2645–2648.
  • Arroyo, A. G., A. Garcia-Pardo, and F. Sanchez-Madrid. 1993. A high affinity conformational state on VLA integrin heterodimers induced by an anti-β1 chain monoclonal antibody. J. Biol. Chem. 268:9863–9868.
  • Bacich, D. J., E. Ramadan, D. S. O'Keefe, N. Bukhari, I. Wegorzewska, O. Ojeifo, R. Olszewski, C. C. Wrenn, T. Bzdega, B. Wroblewska, W. D. Heston, and J. H. Neale. 2002. Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J. Neurochem. 83:20–29.
  • Barker, J. N. 1991. The pathophysiology of psoriasis. Lancet 338:227–230.
  • Bauvois, B. 2004. Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene 23:317–329.
  • Belkin, A. M., and M. A. Stepp. 2000. Integrins as receptors for laminins. Microsc. Res. Tech. 51:280–301.
  • Bhagwat, S. V., J. Lahdenranta, R. Giordano, W. Arap, R. Pasqualini, and L. H. Shapiro. 2001. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97:652–659.
  • Bhagwat, S. V., N. Petrovic, Y. Okamoto, and L. H. Shapiro. 2003. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood 101:1818–1826.
  • Bischofberger, J., and D. Schild. 1996. Glutamate and N-acetylaspartylglutamate block HVA calcium currents in frog olfactory bulb interneurons via an mGluR2/3-like receptor. J. Neurophysiol. 76:2089–2092.
  • Bokoch, G. M. 2003. Biology of the P21-activated kinases. Ann. Rev. Biochem. 72:743–781.
  • Calderwood, D. A. 2004. Integrin activation. J. Cell Sci. 117:657–666.
  • Calderwood, D. A., A. Huttenlocher, W. B. Kiosses, D. M. Rose, D. G. Woodside, M. A. Schwartz, and M. H. Ginsberg. 2001. Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat. Cell Biol. 3:1060–1068.
  • Caplen, N. J., S. Parrish, F. Imani, A. Fire, and R. A. Morgan. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98:9742–9747.
  • Carmeliet, P., L. Moons, A. Luttun, V. Vincenti, V. Compernolle, M. de Mol, Y. Wu, F. Bono, L. Devy, H. Beck, D. Scholz, T. Acker, T. DiPalma, M. Dewerchin, A. Noel, I. Stalmans, A. Barra, S. Blacher, T. Vandendriessche, A. Ponten, U. Eriksson, K. H. Plate, J. M. Foidart, W. Schaper, D. S. Charnock-Jones, D. J. Hicklin, J. M. Herbert, D. Collen, and M. G. Persico. 2001. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7:575–583.
  • Carter, R. E., A. R. Feldman, and J. T. Coyle. 1996. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc. Natl. Acad. Sci. USA 93:749–753.
  • Carter, W., E. Wayner, T. Bouchard, and P. Kaur. 1990. The role of integrins α2β1 and α2β1 in cell-cell and cell-substrate adhesion of human epidermal cells. J. Cell Biol. 110:1387–1404.
  • Chang, S. S., and W. D. Heston. 2002. The clinical role of prostate-specific membrane antigen (PSMA). Urol. Oncol. 7:7–12.
  • Chang, S. S., D. S. O'Keefe, D. J. Bacich, V. E. Reuter, W. D. Heston, and P. B. Gaudin. 1999. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 5:2674–2681.
  • Chang, S. S., V. E. Reuter, W. D. Heston, N. H. Bander, L. S. Grauer, and P. B. Gaudin. 1999. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 59:3192–3198.
  • Chen, W. T. 2003. DPPIV and seprase in cancer invasion and angiogenesis. Adv. Exp. Med. Biol. 524:197–203.
  • Chou, J., N. A. Burke, A. Iwabu, S. C. Watkins, and A. Wells. 2003. Directional motility induced by epidermal growth factor requires Cdc42. Exp. Cell Res. 287:47–56.
  • Colville-Nash, P. R., and D. L. Scott. 1992. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann. Rheum. Dis. 51:919–925.
  • Doshi, S. N., S. J. Moat, M. J. Lewis, I. F. McDowell, J. C. Giddings, and J. Goodfellow. 2004. Short-term high-dose folic acid does not alter markers of endothelial cell damage in patients with coronary heart disease. Int. J. Cardiol. 94:203–207.
  • Drachenberg, D. E., A. A. Elgamal, R. Rowbotham, M. Peterson, and G. P. Murphy. 1999. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41:127–133.
  • Duncan, G. S., D. P. Andrew, H. Takimoto, S. A. Kaufman, H. Yoshida, J. Spellberg, J. Luis de la Pompa, A. Elia, A. Wakeham, B. Karan-Tamir, W. A. Muller, G. Senaldi, M. M. Zukowski, and T. W. Mak. 1999. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162:3022–3030.
  • Elbashir, S. M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.
  • Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27–31.
  • Folkman, J., and P. A. D'Amore. 1996. Blood vessel formation: what is its molecular basis? Cell 87:1153–1155.
  • Fukata, M., T. Watanabe, J. Noritake, M. Nakagawa, M. Yamaga, S. Kuroda, Y. Matsuura, A. Iwamatsu, F. Perez, and K. Kaibuchi. 2002. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109:873–885.
  • Gorlin, J. B., R. Yamin, S. Egan, M. Stewart, T. P. Stossel, D. J. Kwiatkowski, and J. H. Hartwig. 1990. Human endothelial actin binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111:1089–1105.
  • Hanahan, D., G. Christofori, P. Naik, and J. Arbeit. 1996. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 32A:2386–2393.
  • Hanahan, D., and J. Folkman. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364.
  • Harris, E. D., Jr. 1986. Pathogenesis of rheumatoid arthritis. Am. J. Med. 80:4–10.
  • Horoszewicz, J. S., E. Kawinski, and G. P. Murphy. 1987. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 7:927–935.
  • Huang, X., M. Bennett, and P. E. Thorpe. 2004. Anti-tumor effects and lack of side effects in mice of an immunotoxin directed against human and mouse prostate-specific membrane antigen. Prostate 61:1–11.
  • Hutvagner, G., and P. D. Zamore. 2002. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060.
  • Israeli, R. S., W. H. Miller, Jr., S. L. Su, D. S. Samadi, C. T. Powell, W. D. Heston, G. J. Wise, and W. R. Fair. 1995. Sensitive detection of prostatic hematogenous tumor cell dissemination using prostate specific antigen and prostate specific membrane-derived primers in the polymerase chain reaction. J. Urol. 153:573–577.
  • Israeli, R. S., C. T. Powell, W. R. Fair, and W. D. Heston. 1993. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 53:227–230.
  • Jackson, P. F., D. C. Cole, B. S. Slusher, S. L. Stetz, L. E. Ross, B. A. Donzanti, and D. A. Trainor. 1996. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J. Med. Chem. 39:619–622.
  • Kiosses, W. B., R. H. Daniels, C. Otey, G. M. Bokoch, and M. A. Schwartz. 1999. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147:831–844.
  • Kitlinska, J., E. W. Lee, S. Movafagh, J. Pons, and Z. Zukowska. 2002. Neuropeptide Y-induced angiogenesis in aging. Peptides 23:71–77.
  • Kleinman, H. K., and G. R. Martin. 2005. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386.
  • Kramer, R. H. 1994. Characterization of laminin binding integrins. Methods Enzymol. 245:129–147.
  • Lee, M., S. Thangada, J. Paik, G. P. Sapkota, N. Ancellin, S. Chae, M. Wu, M. Morales-Ruiz, W. C. Sessa, D. R. Alessi, and T. Hla. 2001. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol. Cell 8:693–704.
  • Li, Z., M. Hannigan, Z. Mo, B. Liu, W. Lu, Y. Wu, A. V. Smrcka, G. Wu, L. Li, M. Liu, C. K. Huang, and D. Wu. 2003. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell 114:215–227.
  • Lintula, S., and U. H. Stenman. 1997. The expression of prostate-specific membrane antigen in peripheral blood leukocytes. J. Urol. 157:1969–1972.
  • Liu, H., P. Moy, S. Kim, Y. Xia, A. Rajasekaran, V. Navarro, B. Knudsen, and N. H. Bander. 1997. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 57:3629–3634.
  • Liu, S., D. Calderwood, and M. Ginsberg. 2000. Integrin cytoplasmic domain binding proteins. J. Cell Sci. 113:3563–3571.
  • Liu, Z. Y., R. K. Ganju, J. F. Wang, K. Schweitzer, B. Weksler, S. Avraham, and J. E. Groopman. 1997. Characterization of signal transduction pathways in human bone marrow endothelial cells. Blood 90:2253–2259.
  • Loo, D. T., S. B. Kanner, and A. Aruffo. 1998. Filamin binds to the cytoplasmic domain of the β1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem. 273:23304–23312.
  • Luque, A., M. Gomez, W. Puzon, Y. Takada, F. Sanchez-Madrid, and C. Cabanas. 1996. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355-425) of the common beta 1 chain. J. Biol. Chem. 271:11067–11075.
  • Maeshima, Y., P. C. Colorado, A. Torre, K. A. Holthaus, J. A. Grunkemeyer, M. B. Ericksen, H. Hopfer, Y. Xiao, I. E. Stillman, and R. Kalluri. 2000. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J. Biol. Chem. 275:21340–21348.
  • Manser, E., T. Leung, H. Salihuddin, Z. S. Zhao, and L. Lim. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46.
  • Marchio, S., J. Lahdenranta, R. O. Schlingemann, D. Valdembri, P. Wesseling, M. A. Arap, A. Hajitou, M. G. Ozawa, M. Trepel, R. J. Giordano, D. M. Nanus, H. B. Dijkman, E. Oosterwijk, R. L. Sidman, M. D. Cooper, F. Bussolino, R. Pasqualini, and W. Arap. 2004. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5:151–162.
  • Martin, G. A., G. Bollag, F. McCormick, and A. Abo. 1995. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 14:4385.
  • Meyer, S. C., D. A. Sanan, and J. E. Fox. 1998. Role of actin binding protein in insertion of adhesion receptors into the membrane. J. Biol. Chem. 273:3013–3020.
  • O'Keefe, D. S., S. L. Su, D. J. Bacich, Y. Horiguchi, Y. Luo, C. T. Powell, D. Zandvliet, P. J. Russell, P. L. Molloy, N. J. Nowak, T. B. Shows, C. Mullins, R. A. Vonder Haar, W. R. Fair, and W. D. Heston. 1998. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim. Biophys. Acta 1443:113–127.
  • O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285.
  • O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, and J. Folkman. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328.
  • Orkin, R. W., P. Gehron, E. B. McGoodwin, G. R. Martin, T. Valentine, and R. Swarm. 1977. A murine tumor producing a matrix of basement membrane. J. Exp. Med. 145:204–220.
  • Pasqualini, R., E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti. 2000. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60:722–727.
  • Passaniti, A., R. M. Taylor, R. Pili, Y. Guo, P. V. Long, J. A. Haney, R. R. Pauly, D. S. Grant, and G. R. Martin. 1992. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Investig. 67:519–528.
  • Petrovic, N., S. V. Bhagwat, W. J. Ratzan, M. C. Ostrowski, and L. H. Shapiro. 2003. CD13/APN transcription is induced by RAS/MAPK-mediated phosphorylation of Ets-2 in activated endothelial cells. J. Biol. Chem. 278:49358–49368.
  • Pfaff, M., S. Liu, D. J. Erle, and M. H. Ginsberg. 1998. Integrin β cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273:6104–6109.
  • Pinto, J. T., B. P. Suffoletto, T. M. Berzin, C. H. Qiao, S. Lin, W. P. Tong, F. May, B. Mukherjee, and W. D. Heston. 1996. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res. 2:1445–1451.
  • Ribatti, D., A. Vacca, L. Roncali, and F. Dammacco. 1991. Angiogenesis under normal and pathological conditions. Haematologica 76:311–320.
  • Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. 2003. Cell migration: integrating signals from front to back. Science 302:1704–1709.
  • Sarker, K. P., M. Nakata, T. Nakajirna, I. Kitajirna, and I. Maruyarna. 1999. Increased production of vascular endothelial growth factor (VEGF) by angiotensin II in neuro-2A cells. Neurosci. Res. Commun. 25:79–88.
  • Sells, M. A., J. T. Boyd, and J. Chernoff. 1999. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145:837–849.
  • Silver, D. A., I. Pellicer, W. R. Fair, W. D. Heston, and C. Cordon-Cardo. 1997. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3:81–85.
  • Sivakumar, B., L. E. Harry, and E. M. Paleolog. 2004. Modulating angiogenesis: more vs less. JAMA 292:972–977.
  • Su, S. L., I. P. Huang, W. R. Fair, C. T. Powell, and W. D. Heston. 1995. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res. 55:1441–1443.
  • Suzuki-Inoue, K., Y. Yatomi, N. Asazuma, M. Kainoh, T. Tanaka, K. Satoh, and Y. Ozaki. 2001. Rac, a small guanosine triphosphate binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin α2β1. Blood 98:3708–3716.
  • Tiffany, C. W., R. G. Lapidus, A. Merion, D. C. Calvin, and B. S. Slusher. 1999. Characterization of the enzymatic activity of PSM: comparison with brain NAALADase. Prostate 39:28–35.
  • Tino, W. T., M. J. Huber, T. P. Lake, T. G. Greene, G. P. Murphy, and E. H. Holmes. 2000. Isolation and characterization of monoclonal antibodies specific for protein conformational epitopes present in prostate-specific membrane antigen (PSMA). Hybridoma 19:249–257.
  • Troyer, J. K., M. L. Beckett, and G. L. Wright, Jr. 1995. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int. J. Cancer 62:552–558.
  • Vadlamudi, R. K., F. Li, L. Adam, D. Nguyen, Y. Ohta, T. P. Stossel, and R. Kumar. 2002. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat. Cell Biol. 4:681–690.
  • Vorup-Jensen, T., C. V. Carman, M. Shimaoka, P. Schuck, J. Svitel, and T. A. Springer. 2005. Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin αXβ2. Proc. Natl. Acad. Sci. USA 102:1614–1619.
  • Worthylake, R. A., and K. Burridge. 2003. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278:13578–13584.
  • Yoshiji, H., S. Kuriyama, and H. Fukui. 2002. Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol. 23:348–356.
  • Yoshiji, H., S. Kuriyama, M. Kawata, J. Yoshii, Y. Ikenaka, R. Noguchi, T. Nakatani, H. Tsujinoue, and H. Fukui. 2001. The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin. Cancer Res. 7:1073–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.