53
Views
9
CrossRef citations to date
0
Altmetric
Article

Human U2 snRNA Genes Exhibit a Persistently Open Transcriptional State and Promoter Disassembly at Metaphase

, , &
Pages 3573-3588 | Received 16 Jan 2008, Accepted 23 Mar 2008, Published online: 27 Mar 2023

REFERENCES

  • Akman, S. A., J. H. Doroshow, and M. Dizdaroglu. 1990. Base modifications in plasmid DNA caused by potassium permanganate. Arch. Biochem. Biophys. 282:202–205.
  • Ares, M., Jr., J. S. Chung, L. Giglio, and A. M. Weiner. 1987. Distinct factors with Sp1 and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer. Genes Dev. 1:808–817.
  • Bailey, A. D., Z. Li, T. Pavelitz, and A. M. Weiner. 1995. Adenovirus type 12-induced fragility of the human RNU2 locus requires U2 small nuclear RNA transcriptional regulatory elements. Mol. Cell. Biol. 15:6246–6255.
  • Bailey, A. D., T. Pavelitz, and A. M. Weiner. 1998. The microsatellite sequence (CT)n·(GA)n promotes stable chromosomal integration of large tandem arrays of functional human U2 small nuclear RNA genes. Mol. Cell. Biol. 18:2262–2271.
  • Baillat, D., M. A. Hakimi, A. M. Naar, A. Shilatifard, N. Cooch, and R. Shiekhattar. 2005. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123:265–276.
  • Bernstein, L. B., T. Manser, and A. M. Weiner. 1985. Human U1 small nuclear RNA genes: extensive conservation of flanking sequences suggests cycles of gene amplification and transposition. Mol. Cell. Biol. 5:2159–2171.
  • Boyd, D. C., I. H. Greger, and S. Murphy. 2000. In vivo footprinting studies suggest a role for chromatin in transcription of the human 7SK gene. Gene 247:33–44.
  • Boyd, D. C., A. Pombo, and S. Murphy. 2003. Interaction of proteins with promoter elements of the human U2 snRNA genes in vivo. Gene. 315:103–112.
  • Boyd, K. E., J. Wells, J. Gutman, S. M. Bartley, and P. J. Farnham. 1998. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl. Acad. Sci. USA 95:13887–13892.
  • Braastad, C. D., Z. Han, and E. A. Hendrickson. 2003. Constitutive DNase I hypersensitivity of p53-regulated promoters. J. Biol. Chem. 278:8261–8268.
  • Bradsher, J., J. Auriol, L. Proietti de Santis, S. Iben, J. L. Vonesch, I. Grummt, and J. M. Egly. 2002. CSB is a component of RNA pol I transcription. Mol. Cell 10:819–829.
  • Bradsher, J., F. Coin, and J. M. Egly. 2000. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J. Biol. Chem. 275:2532–2538.
  • Bryk, M., S. D. Briggs, B. D. Strahl, M. J. Curcio, C. D. Allis, and F. Winston. 2002. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr. Biol. 12:165–170.
  • Bushnell, D. A., P. Cramer, and R. D. Kornberg. 2002. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc. Natl. Acad. Sci. USA 99:1218–1222.
  • Calvo, O., and J. L. Manley. 2003. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev. 17:1321–1327.
  • Christova, R., and T. Oelgeschlager. 2002. Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat. Cell Biol. 4:79–82.
  • Citterio, E., V. Van Den Boom, G. Schnitzler, R. Kanaar, E. Bonte, R. E. Kingston, J. H. Hoeijmakers, and W. Vermeulen. 2000. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20:7643–7653.
  • Costanzo, G., S. Camier, P. Carlucci, L. Burderi, and R. Negri. 2001. RNA polymerase III transcription complexes on chromosomal 5S rRNA genes in vivo: TFIIIB occupancy and promoter opening. Mol. Cell. Biol. 21:3166–3178.
  • Cuello, P., D. C. Boyd, M. J. Dye, N. J. Proudfoot, and S. Murphy. 1999. Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J. 18:2867–2877.
  • de Vegvar, H. E., E. Lund, and J. E. Dahlberg. 1986. 3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 47:259–266.
  • de Waard, H., J. de Wit, J. O. Andressoo, C. T. van Oostrom, B. Riis, A. Weimann, H. E. Poulsen, H. van Steeg, J. H. Hoeijmakers, and G. T. van der Horst. 2004. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell. Biol. 24:7941–7948.
  • Dieci, G., and A. Sentenac. 1996. Facilitated recycling pathway for RNA polymerase III. Cell 84:245–252.
  • Eberhardy, S. R., and P. J. Farnham. 2001. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276:48562–48571.
  • Egloff, S., D. O'Reilly, R. D. Chapman, A. Taylor, K. Tanzhaus, L. Pitts, D. Eick, and S. Murphy. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–1779.
  • Elco, C. P. 1998. Senior thesis. Yale University, New Haven, CT.
  • Fitzgerald, D. J., and J. N. Anderson. 1999. DNA distortion as a factor in nucleosome positioning. J. Mol. Biol. 293:477–491.
  • Frey, M. R., A. D. Bailey, A. M. Weiner, and A. G. Matera. 1999. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr. Biol. 9:126–135.
  • Fukuda, A., T. Nakadai, M. Shimada, T. Tsukui, M. Matsumoto, Y. Nogi, M. Meisterernst, and K. Hisatake. 2004. Transcriptional coactivator PC4 stimulates promoter escape and facilitates transcriptional synergy by GAL4-VP16. Mol. Cell. Biol. 24:6525–6535.
  • Garrity, P. A., and B. J. Wold. 1992. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89:1021–1025.
  • Gehring, N. H., M. W. Hentze, and K. Pantopoulos. 1999. Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress. J. Biol. Chem. 274:6219–6225.
  • Geiduschek, E. P., and G. A. Kassavetis. 2001. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310:1–26.
  • Gelbart, M. E., N. Bachman, J. Delrow, J. D. Boeke, and T. Tsukiyama. 2005. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19:942–954.
  • Granneman, S., and S. J. Baserga. 2005. Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing. Curr. Opin. Cell Biol. 17:281–286.
  • Hanzlowsky, A., B. Jelencic, G. Jawdekar, C. S. Hinkley, J. H. Geiger, and R. W. Henry. 2006. Co-expression of multiple subunits enables recombinant SNAPC assembly and function for transcription by human RNA polymerases II and III. Protein Expr. Purif. 48:215–223.
  • Hernandez, N. 2001. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J. Biol. Chem. 276:26733–26736.
  • Hernandez, N., and A. M. Weiner. 1986. Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 47:249–258.
  • Hershkovitz, M., and A. D. Riggs. 1997. Ligation-mediated PCR for chromatin-structure analysis of interphase and metaphase chromatin. Methods 11:253–263.
  • Ho, C. K., and S. Shuman. 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3:405–411.
  • Holstege, F. C., and H. T. Timmers. 1997. Analysis of open complex formation during RNA polymerase II transcription initiation using heteroduplex templates and potassium permanganate probing. Methods 12:203–211.
  • Jacobs, E. Y., I. Ogiwara, and A. M. Weiner. 2004. Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3′ processing. Mol. Cell. Biol. 24:846–855.
  • Jawdekar, G. W., A. Hanzlowsky, S. L. Hovde, B. Jelencic, M. Feig, J. H. Geiger, and R. W. Henry. 2006. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPC. J. Biol. Chem. 281:31050–31060.
  • Jawdekar, G. W., and R. W. Henry. Transcriptional regulation of human small nuclear RNA genes. Biochim. Biophys. Acta Gene Reg. Mech., in press.
  • Jiang, C., and D. Liao. 1999. Striking bimodal methylation of the repeat unit of the tandem array encoding human U2 snRNA (the RNU2 locus). Genomics 62:508–518.
  • Kassavetis, G. A., B. R. Braun, L. H. Nguyen, and E. P. Geiduschek. 1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60:235–245.
  • Kireeva, M. L., B. Hancock, G. H. Cremona, W. Walter, V. M. Studitsky, and M. Kashlev. 2005. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18:97–108.
  • Kleiman, F. E., F. Wu-Baer, D. Fonseca, S. Kaneko, R. Baer, and J. L. Manley. 2005. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19:1227–1237.
  • Kugel, J. F., and J. A. Goodrich. 1998. Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc. Natl. Acad. Sci. USA 95:9232–9237.
  • Kuhlman, T. C., H. Cho, D. Reinberg, and N. Hernandez. 1999. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol. Cell. Biol. 19:2130–2141.
  • Lambrinakos, A., K. E. Humphrey, J. J. Babon, T. P. Ellis, and R. G. Cotton. 1999. Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol. Nucleic Acids Res. 27:1866–1874.
  • Langst, G., T. Schatz, J. Langowski, and I. Grummt. 1997. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer. Nucleic Acids Res. 25:511–517.
  • Lee, D., J. W. Kim, T. Seo, S. G. Hwang, E. J. Choi, and J. Choe. 2002. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 277:22330–22337.
  • Le Page, F., V. Randrianarison, D. Marot, J. Cabannes, M. Perricaudet, J. Feunteun, and A. Sarasin. 2000. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res. 60:5548–5552.
  • Li, Z., A. Yu, and A. M. Weiner. 1998. Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function. J. Virol. 72:4183–4191.
  • Liao, D. 1999. Concerted evolution: molecular mechanism and biological implications. Am. J. Hum. Genet. 64:24–30.
  • Liao, D., T. Pavelitz, J. R. Kidd, K. K. Kidd, and A. M. Weiner. 1997. Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J. 16:588–598.
  • Liao, D., T. Pavelitz, and A. M. Weiner. 1998. Characterization of a novel class of interspersed LTR elements in primate genomes: structure, genomic distribution, and evolution. J. Mol. Evol. 46:649–660.
  • Liao, D., and A. M. Weiner. 1995. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n·(GA)n microsatellite embedded within the U2 repeat unit. Genomics 30:583–593.
  • Liao, D., A. Yu, and A. M. Weiner. 1999. Coexpression of the adenovirus 12 E1B 55 kDa oncoprotein and cellular tumor suppressor p53 is sufficient to induce metaphase fragility of the human RNU2 locus. Virology 254:11–23.
  • Lindgren, V., M. Ares, Jr., A. M. Weiner, and U. Francke. 1985. Human genes for U2 small nuclear RNA map to a major adenovirus 12 modification site on chromosome 17. Nature 314:115–116.
  • Lis, J. T. 2007. Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450:198–202.
  • Little, R. D., and D. C. Braaten. 1989. Genomic organization of human 5 S rDNA and sequence of one tandem repeat. Genomics 4:376–383.
  • Liu, J., S. Akoulitchev, A. Weber, H. Ge, S. Chuikov, D. Libutti, X. W. Wang, J. W. Conaway, C. C. Harris, R. C. Conaway, D. Reinberg, and D. Levens. 2001. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 104:353–363.
  • Lu, T., Y. Pan, S. Y. Kao, C. Li, I. Kohane, J. Chan, and B. A. Yankner. 2004. Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891.
  • Lund, E., and J. E. Dahlberg. 1984. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J. Biol. Chem. 259:2013–2021.
  • Ma, B., and N. Hernandez. 2001. A map of protein-protein contacts within the small nuclear RNA-activating protein complex SNAPc. J. Biol. Chem. 276:5027–5035.
  • Mandel, C. R., S. Kaneko, H. Zhang, D. Gebauer, V. Vethantham, J. L. Manley, and L. Tong. 2006. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956.
  • Mangin, M., M. Ares, Jr., and A. M. Weiner. 1986. Human U2 small nuclear RNA genes contain an upstream enhancer. EMBO J. 5:987–995.
  • Mangin, M., M. Ares, Jr., and A. M. Weiner. 1985. U1 small nuclear RNA genes are subject to dosage compensation in mouse cells. Science 229:272–275.
  • Martin, M., J. Cho, A. J. Cesare, J. D. Griffith, and G. Attardi. 2005. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 123:1227–1240.
  • Matera, A. G., A. M. Weiner, and C. W. Schmid. 1990. Structure and evolution of the U2 small nuclear RNA multigene family in primates: gene amplification under natural selection? Mol. Cell. Biol. 10:5876–5882.
  • Mayer, C., and I. Grummt. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391.
  • Medlin, J., A. Scurry, A. Taylor, F. Zhang, B. M. Peterlin, and S. Murphy. 2005. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24:4154–4165.
  • Medlin, J. E., P. Uguen, A. Taylor, D. L. Bentley, and S. Murphy. 2003. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J. 22:925–934.
  • Michelotti, E. F., S. Sanford, and D. Levens. 1997. Marking of active genes on mitotic chromosomes. Nature 388:895–899.
  • Moisan, A., C. Larochelle, B. Guillemette, and L. Gaudreau. 2004. BRCA1 can modulate RNA polymerase II carboxy-terminal domain phosphorylation levels. Mol. Cell. Biol. 24:6947–6956.
  • Mosesso, P., S. Penna, G. Pepe, C. Lorenti-Garcia, and F. Palitti. 2004. Potassium bromate but not X-rays cause unexpectedly elevated levels of DNA breakage similar to those induced by ultraviolet light in Cockayne syndrome (CS-B) fibroblasts. Cytogenet. Genome Res. 104:178–181.
  • Mueller, P. R., and B. Wold. 1989. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786.
  • Nagahara, H., A. M. Vocero-Akbani, E. L. Snyder, A. Ho, D. G. Latham, N. A. Lissy, M. Becker-Hapak, S. A. Ezhevsky, and S. F. Dowdy. 1998. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4:1449–1452.
  • Newman, J. C., A. D. Bailey, and A. M. Weiner. 2006. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc. Natl. Acad. Sci. USA 103:9613–9618.
  • Newman, J. C., A. D. Bailey, H.-Y. Fan, T. Pavelitz, and A. M. Weiner. 2008. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet. 4:e1000031.
  • Nilsen, T. W. 2003. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25:1147–1149.
  • Orlando, V. 2000. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25:99–104.
  • Orlando, V., H. Strutt, and R. Paro. 1997. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214.
  • Panov, K. I., J. K. Friedrich, J. Russell, and J. C. Zomerdijk. 2006. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J. 25:3310–3322.
  • Pavelitz, T., D. Liao, and A. M. Weiner. 1999. Concerted evolution of the tandem array encoding primate U2 snRNA (the RNU2 locus) is accompanied by dramatic remodeling of the junctions with flanking chromosomal sequences. EMBO J. 18:3783–3792.
  • Pavelitz, T., L. Rusche, A. G. Matera, J. M. Scharf, and A. M. Weiner. 1995. Concerted evolution of the tandem array encoding primate U2 snRNA occurs in situ, without changing the cytological context of the RNU2 locus. EMBO J. 14:169–177.
  • Perriman, R. J., and M. Ares, Jr. 2007. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev. 21:811–820.
  • Preuss, S., and C. S. Pikaard. 2007. rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim. Biophys. Acta 1769:383–392.
  • Rapin, I., Y. Lindenbaum, D. W. Dickson, K. H. Kraemer, and J. H. Robbins. 2000. Cockayne syndrome and xeroderma pigmentosum. Neurology 55:1442–1449.
  • Rincon, J. C., S. K. Engler, B. W. Hargrove, and G. R. Kunkel. 1998. Molecular cloning of a cDNA encoding human SPH-binding factor, a conserved protein that binds to the enhancer-like region of the U6 small nuclear RNA gene promoter. Nucleic Acids Res. 26:4846–4852.
  • Sandmeier, J. J., S. French, Y. Osheim, W. L. Cheung, C. M. Gallo, A. L. Beyer, and J. S. Smith. 2002. RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J. 21:4959–4968.
  • Schroder, O., E. P. Geiduschek, and G. A. Kassavetis. 2003. A single-stranded promoter for RNA polymerase III. Proc. Natl. Acad. Sci. USA 100:934–939.
  • Singh, B. N., and M. Hampsey. 2007. A transcription-independent role for TFIIB in gene looping. Mol. Cell 27:806–816.
  • Tchou, J., V. Bodepudi, S. Shibutani, I. Antoshechkin, J. Miller, A. P. Grollman, and F. Johnson. 1994. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem. 269:15318–15324.
  • Tomlinson, G. E., T. T. Chen, V. A. Stastny, A. K. Virmani, M. A. Spillman, V. Tonk, J. L. Blum, N. R. Schneider, I. I. Wistuba, J. W. Shay, J. D. Minna, and A. F. Gazdar. 1998. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res. 58:3237–3242.
  • Toulokhonov, I., J. Zhang, M. Palangat, and R. Landick. 2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27:406–419.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71:939–953.
  • Tu, N., Y. Hu, and N. F. Mivechi. 2006. Heat shock transcription factor (Hsf)-4b recruits Brg1 during the G1 phase of the cell cycle and regulates the expression of heat shock proteins. J. Cell Biochem. 98:1528–1542.
  • Uguen, P., and S. Murphy. 2003. The 3′ ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing. EMBO J. 22:4544–4554.
  • Van Arsdell, S. W., and A. M. Weiner. 1984. Human genes for U2 small nuclear RNA are tandemly repeated. Mol. Cell. Biol. 4:492–499.
  • van der Drift, P., A. Chan, G. Laureys, N. van Roy, G. Sickmann, J. den Dunnen, A. Westerveld, F. Speleman, and R. Versteeg. 1995. Balanced translocation in a neuroblastoma patient disrupts a cluster of small nuclear RNA U1 and tRNA genes in chromosomal band 1p36. Genes Chromosomes Cancer 14:35–42.
  • Weinmann, A. S., S. M. Bartley, T. Zhang, M. Q. Zhang, and P. J. Farnham. 2001. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21:6820–6832.
  • Welcsh, P. L., M. K. Lee, R. M. Gonzalez-Hernandez, D. J. Black, M. Mahadevappa, E. M. Swisher, J. A. Warrington, and M. C. King. 2002. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl. Acad. Sci. USA 99:7560–7565.
  • Westin, G., J. Zabielski, K. Hammarstrom, H. J. Monstein, C. Bark, and U. Pettersson. 1984. Clustered genes for human U2 RNA. Proc. Natl. Acad. Sci. USA 81:3811–3815.
  • Wong, H. K., M. Muftuoglu, G. Beck, S. Z. Imam, V. A. Bohr, and D. M. Wilson III. 2007. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 35:4103–4113.
  • Wu, W., H. Nishikawa, R. Hayami, K. Sato, A. Honda, S. Aratani, T. Nakajima, M. Fukuda, and T. Ohta. 2007. BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res. 67:951–958.
  • Xing, H., D. C. Wilkerson, C. N. Mayhew, E. J. Lubert, H. S. Skaggs, M. L. Goodson, Y. Hong, O. K. Park-Sarge, and K. D. Sarge. 2005. Mechanism of hsp70i gene bookmarking. Science 307:421–423.
  • Yasuhara, J. C., and B. T. Wakimoto. 2006. Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet. 22:330–338.
  • Yoon, J. B., S. Murphy, L. Bai, Z. Wang, and R. G. Roeder. 1995. Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol. Cell. Biol. 15:2019–2027.
  • Yu, A., A. D. Bailey, and A. M. Weiner. 1998. Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway. Hum. Mol. Genet. 7:609–617.
  • Yu, A., H. Y. Fan, D. Liao, A. D. Bailey, and A. M. Weiner. 2000. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5:801–810.
  • Zhao, X., P. S. Pendergrast, and N. Hernandez. 2001. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell 7:539–549.
  • zur Hausen, H. 1967. Induction of specific chromosomal aberrations by adenovirus type 12 in human embryonic kidney cells. J. Virol. 1:1174–1185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.