79
Views
11
CrossRef citations to date
0
Altmetric
Article

Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13

, , , , , , & show all
Pages 1750-1763 | Received 12 Feb 2016, Accepted 31 Mar 2016, Published online: 17 Mar 2023

REFERENCES

  • Osterhage JL, Friedman KL. 2009. Chromosome end maintenance by telomerase. J Biol Chem 284:16061–16065. http://dx.doi.org/10.1074/jbc.R900011200.
  • Blackburn EH. 1991. Structure and function of telomeres. Nature 350:569–573. http://dx.doi.org/10.1038/350569a0.
  • Wellinger RJ, Zakian VA. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191:1073–1105. http://dx.doi.org/10.1534/genetics.111.137851.
  • Hardy CF, Sussel L, Shore D. 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6:801–814. http://dx.doi.org/10.1101/gad.6.5.801.
  • Wotton D, Shore D. 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11:748–760. http://dx.doi.org/10.1101/gad.11.6.748.
  • Marcand S, Gilson E, Shore D. 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990. http://dx.doi.org/10.1126/science.275.5302.986.
  • Levy DL, Blackburn EH. 2004. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24:10857–10867. http://dx.doi.org/10.1128/MCB.24.24.10857-10867.2004.
  • Hoeijmakers JH. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366–374. http://dx.doi.org/10.1038/35077232.
  • Aylon Y, Kupiec M. 2004. DSB repair: the yeast paradigm. DNA Repair (Amst) 3:797–815. http://dx.doi.org/10.1016/j.dnarep.2004.04.013.
  • Kolodner RD, Putnam CD, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557. http://dx.doi.org/10.1126/science.1075277.
  • Pennaneach V, Putnam CD, Kolodner RD. 2006. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol Microbiol 59:1357–1368. http://dx.doi.org/10.1111/j.1365-2958.2006.05026.x.
  • Bianchi A, Negrini S, Shore D. 2004. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol Cell 16:139–146. http://dx.doi.org/10.1016/j.molcel.2004.09.009.
  • Ray A, Runge KW. 1998. The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation. Mol Cell Biol 18:1284–1295. http://dx.doi.org/10.1128/MCB.18.3.1284.
  • Grossi S, Bianchi A, Damay P, Shore D. 2001. Telomere formation by Rap1p binding site arrays reveals end-specific length regulation requirements and active telomeric recombination. Mol Cell Biol 21:8117–8128. http://dx.doi.org/10.1128/MCB.21.23.8117-8128.2001.
  • Lustig AJ, Kurtz S, Shore D. 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553. http://dx.doi.org/10.1126/science.2237406.
  • Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. 2003. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17:2384–2395. http://dx.doi.org/10.1101/gad.1125903.
  • Schild D, Calderon IL, Contopoulo R, Mortimer RK. 1983. Cloning of yeast recombination repair genes and evidence that several are non-essential genes, p 417–427. In Friedberg EC, Bridges BA (ed), Cellular responses to DNA damage. Alan R. Liss, New York, NY.
  • Scherer S, David RW. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A 76:4951–4955. http://dx.doi.org/10.1073/pnas.76.10.4951.
  • Horton RM, Cai ZL, Ho SN, Pease LR. 1990. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535.
  • Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA. 2013. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458–462. http://dx.doi.org/10.1038/nature12149.
  • Anderson EM, Halsey WA, Wuttke DS. 2002. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res 30:4305–4313. http://dx.doi.org/10.1093/nar/gkf554.
  • Ji H, Adkins CJ, Cartwright BR, Friedman KL. 2008. Yeast Est2p affects telomere length by influencing association of Rap1p with telomeric chromatin. Mol Cell Biol 28:2380–2390. http://dx.doi.org/10.1128/MCB.01648-07.
  • Bairley RCB, Guillaume G, Vega LR, Friedman KL. 2011. A mutation in the catalytic subunit of yeast telomerase alters primer-template alignment while promoting processivity and protein-DNA binding. J Cell Sci 124:4241–4252. http://dx.doi.org/10.1242/jcs.090761.
  • Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23:81–85.
  • Lydeard JR, Lipkin-Moore Z, Jain S, Eapen VV, Haber JE. 2010. Sgs1 and Exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet 6:e1000973. http://dx.doi.org/10.1371/journal.pgen.1000973.
  • Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–360. http://dx.doi.org/10.1016/0092-8674(93)90234-H.
  • Conrad MN, Wright JH, Wolf AJ, Zakian VA. 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63:739–750. http://dx.doi.org/10.1016/0092-8674(90)90140-A.
  • Shore D, Nasmyth K. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732. http://dx.doi.org/10.1016/0092-8674(87)90095-X.
  • Lin J-J, Zakian VA. 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93:13760–13765. http://dx.doi.org/10.1073/pnas.93.24.13760.
  • Nugent CI, Hughes TR, Lue NF, Lundblad V. 1996. Cdc13p: a single-strand telomeric DNA binding protein with a dual role in yeast telomere maintenance. Science 274:249–252. http://dx.doi.org/10.1126/science.274.5285.249.
  • Hughes TR, Weilbaecher RG, Walterscheid M, Lundblad V. 2000. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A 97:6457–6462. http://dx.doi.org/10.1073/pnas.97.12.6457.
  • Bourns BD, Alexander MK, Smith AM, Zakian VA. 1998. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol 18:5600–5608. http://dx.doi.org/10.1128/MCB.18.9.5600.
  • Tsukamoto Y, Taggart AKP, Zakian VA. 2001. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11:1328–1335. http://dx.doi.org/10.1016/S0960-9822(01)00372-4.
  • Eldridge AM, Halsey WA, Wuttke DS. 2006. Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13. Biochemistry 45:871–879. http://dx.doi.org/10.1021/bi0512703.
  • Giniger E, Varnum SM, Ptashne M. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774. http://dx.doi.org/10.1016/0092-8674(85)90336-8.
  • Fouladi B, Sabatier L, Miller D, Pottier G, Murnane JP. 2000. The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia 2:540–554. http://dx.doi.org/10.1038/sj.neo.7900107.
  • Kostiner DR, Nguyen H, Cox VA, Cotter PD. 2002. Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q. Cytogenet Genome Res 98:9–12. http://dx.doi.org/10.1159/000068536.
  • Fortin F, Beaulieu Bergeron M, Fetni R, Lemieux N. 2009. Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities. Cytogenet Genome Res 125:176–185. http://dx.doi.org/10.1159/000230002.
  • Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, Grillo L, Galesi O, Vetro A, Ciccone R, Bonati MT, Giglio S, Guerrini R, Osimani S, Marelli S, Zucca C, Grasso R, Borgatti R, Mani E, Motta C, Molteni M, Romano C, Greco D, Reitano S, Baroncini A, Lapi E, Cecconi A, Arrigo G, Patricelli MG, Pantaleoni C, D'Arrigo S, Riva D, Sciacca F, Dalla Bernardina B, Zoccante L, Darra F, Termine C, Maserati E, Bigoni S, Priolo E, Bottani A, Gimelli S, Bena F, Brusco A, di Gregorio E, Bagnasco I, Giussani U, Nitsch L, Politi P, Martinez-Frias ML, Martínez-Fernández ML, Martínez Guardia N, Bremer A, Anderlid BM, Zuffardi O. 2011. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet 7:e1002173. http://dx.doi.org/10.1371/journal.pgen.1002173.
  • Mangahas JL, Alexander MK, Sandell LL, Zakian VA. 2001. Repair of chromosome ends after telomere loss in Saccharomyces. Mol Biol Cell 12:4078–4089. http://dx.doi.org/10.1091/mbc.12.12.4078.
  • Zhang W, Durocher D. 2010. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev 24:502–515. http://dx.doi.org/10.1101/gad.1869110.
  • Ribeyre C, Shore D. 2012. Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19:307–313. http://dx.doi.org/10.1038/nsmb.2225.
  • Hirano Y, Sugimoto K. 2007. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol Biol Cell 18:2026–2036. http://dx.doi.org/10.1091/mbc.E06-12-1074.
  • Rhee HS, Pugh BF. 2011. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419. http://dx.doi.org/10.1016/j.cell.2011.11.013.
  • Kramer KM, Haber JE. 1993. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev 7:2345–2356. http://dx.doi.org/10.1101/gad.7.12a.2345.
  • Murray AW, Claus TE, Szostak JW. 1988. Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae. Mol Cell Biol 8:4642–4650. http://dx.doi.org/10.1128/MCB.8.11.4642.
  • Garvik B, Carson M, Hartwell L. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15:6128–6138. http://dx.doi.org/10.1128/MCB.15.11.6128.
  • Grandin N, Damon C, Charbonneau M. 2001. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO j 20:6127–6139. http://dx.doi.org/10.1093/emboj/20.21.6127.
  • Ngo HP, Lydall D. 2010. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS Genet 6:e1001072. http://dx.doi.org/10.1371/journal.pgen.1001072.
  • Greetham M, Skordalakes E, Lydall D, Connolly BA. 2015. The telomere binding protein Cdc13 and the single-stranded DNA binding protein RPA protect telomeric DNA from resection by exonucleases. J Mol Biol 427:3023–3030. http://dx.doi.org/10.1016/j.jmb.2015.08.002.
  • Mitchell MT, Smith JS, Mason M, Harper S, Speicher DW, Johnson FB, Skordalakes E. 2010. Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation. Mol Cell Biol 30:5325–5334. http://dx.doi.org/10.1128/MCB.00515-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.