547
Views
43
CrossRef citations to date
0
Altmetric
Minireview

Looking Down on NF-κB

&
Article: e00104-20 | Published online: 03 Mar 2023

REFERENCES

  • Gilmore TD, Temin HM. 1986. Different localization of the product of the v-rel oncogene in chicken fibroblasts and spleen cells correlates with transformation by REV-T. Cell 44:791–800. https://doi.org/10.1016/0092-8674(86)90845-7.
  • Gilmore TD. 1990. NF-κB, KBF1, dorsal, and related matters. Cell 62:841–843. https://doi.org/10.1016/0092-8674(90)90257-f.
  • Steward R. 1987. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238:692–694. https://doi.org/10.1126/science.3118464.
  • Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D. 1990. Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell 62:1019–1029. https://doi.org/10.1016/0092-8674(90)90276-k.
  • Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O, Urban MB, Kourilsky P, Baeuerle PA, Israël A. 1990. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62:1007–1018. https://doi.org/10.1016/0092-8674(90)90275-j.
  • Gilmore TD, Wolenski FS. 2012. NF-κB: where did it come from and why? Immunol Rev 246:14–35. https://doi.org/10.1111/j.1600-065X.2012.01096.x.
  • Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 112:11893–11898. https://doi.org/10.1073/pnas.1513318112.
  • Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N. 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323. https://doi.org/10.1038/nature10249.
  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94. https://doi.org/10.1126/science.1139158.
  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726. https://doi.org/10.1038/nature09201.
  • Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I. 2013. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325. https://doi.org/10.1038/ncomms3325.
  • Richter DJ, Fozouni P, Eisen MB, King N. 2018. Gene family innovation, conservation and loss on the animal stem lineage. Elife 7:e34226. https://doi.org/10.7554/eLife.34226.
  • Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, Holstein T, Steele RE, Jacobs DK, Greenspan RJ. 2019. The genome of the jellyfish Aurelia and the evolution of animal complexity. Nat Ecol Evol 3:96–104. https://doi.org/10.1038/s41559-018-0719-8.
  • Gilmore TD. 2006. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680–6684. https://doi.org/10.1038/sj.onc.1209954.
  • Hayden MS, Ghosh S. 2008. Shared principles in NF-κB signaling. Cell 132:344–362. https://doi.org/10.1016/j.cell.2008.01.020.
  • Sun S-C. 2011. Non-canonical NF-κB signaling pathway. Cell Res 21:71–85. https://doi.org/10.1038/cr.2010.177.
  • Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engström Y, Maniatis T, Hultmark D. 2003. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc Natl Acad Sci U S A 100:5991–5996. https://doi.org/10.1073/pnas.1035902100.
  • Brennan JJ, Gilmore TD. 2018. Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol 35:1576–1587. https://doi.org/10.1093/molbev/msy050.
  • Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J, Awtry J, Banic S, Chacko C, Chezian A, Dowers D, Estrada F, Hsieh Y-H, Kang J, Li W, Malchiodi Z, Malinowski J, Matuszak S, McTigue T, Mueller D, Nguyen B, Nguyen M, Nguyen P, Nguyen S, Njoku N, Patel K, Pellegrini W, Pliakas T, Qadir D, Ryan E, Schiffer A, Thiel A, Yunes SA, Spilios KE, Pinzón C JH, Mydlarz LD, Gilmore TD. 2018. A conserved Toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata. Dev Comp Immunol 79:128–136. https://doi.org/10.1016/j.dci.2017.10.016.
  • Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot J-F, Tambutté S, Allemand D, Aranda M. 2017. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep 7:17583. https://doi.org/10.1038/s41598-017-17484-x.
  • Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles N. 2018. Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution. Sci Rep 8:16134. https://doi.org/10.1038/s41598-018-34459-8.
  • Gauthier M, Degnan BM. 2008. The transcription factor NF-κB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain. Dev Genes Evol 218:23–32. https://doi.org/10.1007/s00427-007-0197-5.
  • Mansfield KM, Carter NM, Nguyen L, Cleves PA, Alshanbayeva A, Williams LM, Penvose AR, Crowder C, Finnerty JR, Gilmore TD, Siggers TW, Weis VM. 2017. Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci Rep 7:16025. https://doi.org/10.1038/s41598-017-16168-w.
  • Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. 2014. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics 15:71. https://doi.org/10.1186/1471-2164-15-71.
  • Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y. 2010. Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 18:132–139. https://doi.org/10.1016/j.tim.2009.11.004.
  • Jernigan KK, Bordenstein SR. 2014. Ankyrin domains across the Tree of Life. PeerJ 2:e264. https://doi.org/10.7717/peerj.264.
  • Hoffmeyer TT, Burkhardt P. 2016. Choanoflagellate models—Monosiga brevicollis and Salpingoeca rosetta. Curr Opin Genet Dev 39:42–47. https://doi.org/10.1016/j.gde.2016.05.016.
  • Williams LM, Inge MM, Mansfield KM, Rasmussen A, Afghani J, Agrba M, Albert C, Andersson C, Babaei M, Babaei M, Bagdasaryants A, Bonilla A, Browne A, Carpenter S, Chen T, Christie B, Cyr A, Dam K, Dulock N, Erdene G, Esau L, Esonwune S, Hanchate A, Huang X, Jennings T, Kasabwala A, Kehoe L, Kobayashi R, Lee M, LeVan A, Liu Y, Murphy E, Nambiar A, Olive M, Patel D, Pavesi F, Petty CA, Samofalova Y, Sanchez S, Stejskal C, Tang Y, Yapo A, Cleary JP, Yunes SA, Siggers T, Gilmore TD. 2020. Transcription factor NF-κB in a basal metazoan, the sponge, has conserved and unique sequences, activities, and regulation. Dev Comp Immunol 104:103559. https://doi.org/10.1016/j.dci.2019.103559.
  • Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. 2014. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 31:1102–1120. https://doi.org/10.1093/molbev/msu057.
  • Sullivan JC, Kalaitzidis D, Gilmore TD, Finnerty JR. 2007. Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis. Dev Genes Evol 217:63–72. https://doi.org/10.1007/s00427-006-0111-6.
  • Zárate-Potes A, Ocampo ID, Cadavid LF. 2019. The putative immune recognition repertoire of the model cnidarian Hydractinia symbiolongicarpus is large and diverse. Gene 684:104–117. https://doi.org/10.1016/j.gene.2018.10.068.
  • Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Loso T, Bosch TCG. 2012. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109:19374–19379. https://doi.org/10.1073/pnas.1213110109.
  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PRH, et al.. 2010. The dynamic genome of Hydra. Nature 464:592–596. https://doi.org/10.1038/nature08830.
  • Gacesa R, Chung R, Dunn SR, Weston AJ, Jaimes-Becerra A, Marques AC, Morandini AC, Hranueli D, Starcevic A, Ward M, Long PF. 2015. Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia). BMC Genomics 16:774. https://doi.org/10.1186/s12864-015-1976-4.
  • Stroud JC, Chen L. 2003. Structure of NFAT bound to DNA as a monomer. J Mol Biol 334:1009–1022. https://doi.org/10.1016/j.jmb.2003.09.065.
  • Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR, Gilmore TD. 2011. Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 31:1076–1087. https://doi.org/10.1128/MCB.00927-10.
  • Ryzhakov G, Teixeira A, Saliba D, Blazek K, Muta T, Ragoussis J, Udalova IA. 2013. Cross-species analysis reveals evolving and conserved features of the nuclear factor κB (NF-κB) proteins. J Biol Chem 288:11546–11554. https://doi.org/10.1074/jbc.M113.451153.
  • Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD, Finnerty JR. 2009. Two alleles of NF-κB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS One 4:e7311. https://doi.org/10.1371/journal.pone.0007311.
  • Wolenski FS, Chandani S, Stefanik DJ, Jiang N, Chu E, Finnerty JR, Gilmore TD. 2011. Two polymorphic residues account for the differences in DNA binding and transcriptional activation by NF-κB proteins encoded by naturally occurring alleles in Nematostella vectensis. J Mol Evol 73:325–336. https://doi.org/10.1007/s00239-011-9479-7.
  • Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. 2016. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 4:e1616. https://doi.org/10.7717/peerj.1616.
  • Ying H, Hayward DC, Cooke I, Wang W, Moya A, Siemering KR, Sprungala S, Ball EE, Forêt S, Miller DJ. 2019. The whole-genome sequence of the coral Acropora millepora. Genome Biol Evol 11:1374–1379. https://doi.org/10.1093/gbe/evz077.
  • Lin L, DeMartino GN, Greene WC. 1998. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92:819–828. https://doi.org/10.1016/s0092-8674(00)81409-9.
  • Fort P, Kajava AV, Delsuc F, Coux O. 2015. Evolution of proteasome regulators in eukaryotes. Genome Biol Evol 7:1363–1379. https://doi.org/10.1093/gbe/evv068.
  • Siboni N, Abrego D, Motti CA, Tebben J, Harder T. 2014. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora. PLoS One 9:e91082. https://doi.org/10.1371/journal.pone.0091082.
  • Wolenski FS, Bradham CA, Finnerty JR, Gilmore TD. 2013. NF-κB is required for cnidocyte development in the sea anemone Nematostella vectensis. Dev Biol 373:205–215. https://doi.org/10.1016/j.ydbio.2012.10.004.
  • Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. 2018. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 145:dev162867. https://doi.org/10.1242/dev.162867.
  • Fischer AH, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. 2014. SeaBase: a multispecies transcriptomic resource and platform for gene network interface. Integr Comp Biol 54:250–263. https://doi.org/10.1093/icb/icu065.
  • Tulin S, Aguiar D, Istrail S, Smith J. 2013. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 4:16. https://doi.org/10.1186/2041-9139-4-16.
  • Helm RR, Siebert S, Tulin S, Smith J, Dunn CW. 2013. Characterization of differential transcript abundance through time during Nematostella vectensis development. BMC Genomics 14:266. https://doi.org/10.1186/1471-2164-14-266.
  • Babonis LS, Martindale MQ. 2014. Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 54:714–722. https://doi.org/10.1093/icb/icu027.
  • Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. 2017. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A 114:E10122–E10131. https://doi.org/10.1073/pnas.1711530114.
  • Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D, Roper KE, Fernandez-Valverde SL, Degnan SM, Degnan BM. 2019. Pluripotency and the origin of animal multicellularity. Nature 570:519–522. https://doi.org/10.1038/s41586-019-1290-4.
  • Musser JM, Schippers KJ, Nickel M, Mizzon G, Kohn AB, Pape C, Hammel JU, Wolf F, Liang C, Hernández-Plaza A, Achim K, Schieber NL, Francis WR, Sv R, Kling S, Renkert M, Feuda R, Gaspar I, Burkhardt P, Bork P, Beck M, Kreshuk A, Wörheide G, Huerta-Cepas J, Schwab Y, Moroz LL, Arendt D. 2019. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. bioRxiv https://doi.org/10.1101/758276.
  • Pita L, Hoeppner M, Ribes M, Hentschel U. 2018. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep 8:16081. https://doi.org/10.1038/s41598-018-34330-w.
  • Weis VM. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. https://doi.org/10.1242/jeb.009597.
  • Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, Guse A. 2016. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep 6:32366–32312. https://doi.org/10.1038/srep32366.
  • Mansfield KM, Cleves PA, Vlack EV, Kriefall NG, Benson BE, Camacho DJ, Hemond O, Pedroza M, Siggers T, Pringle JR, Davies SW, Gilmore TD. 2019. Varied effects of algal symbionts on transcription factor NF-κB in a sea anemone and a coral: possible roles in symbiosis and thermotolerance. bioRxiv https://doi.org/10.1101/640177.
  • Burns JA, Zhang H, Hill E, Kim E, Kerney R. 2017. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Elife 6:e22054. https://doi.org/10.7554/eLife.22054.
  • Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, Mydlarz LD. 2015. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci 2:140214. https://doi.org/10.1098/rsos.140214.
  • DeSalvo MK, Sunagawa S, Voolstra CR, Medina M. 2010. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113. https://doi.org/10.3354/meps08372.
  • Traylor-Knowles N, Rose NH, Sheets EA, Palumbi SR. 2017. Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biol Bull 232:91–100. https://doi.org/10.1086/692717.
  • Fuess LE, Pinzón C JH, Weil E, Grinshpon RD, Mydlarz LD. 2017. Life or death: disease-tolerant coral species activate autophagy following immune challenge. Proc Biol Sci 284:20170771. https://doi.org/10.1098/rspb.2017.0771.
  • Wenger Y, Buzgariu W, Reiter S, Galliot B. 2014. Injury-induced immune responses in Hydra. Semin Immunol 26:277–294. https://doi.org/10.1016/j.smim.2014.06.004.
  • Woznica A, Gerdt JP, Hulett RE, Clardy J, King N. 2017. Mating in the closest living relatives of animals is induced by a bacterial chondroitinase. Cell 170:1175–1183.e11. https://doi.org/10.1016/j.cell.2017.08.005.
  • Brook CE, Boots M, Chandran K, Dobson AP, Drosten C, Graham AL, Grenfell BT, Müller MA, Ng M, Wang LF, van Leeuwen A. 2020. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. Elife 9:e48401. https://doi.org/10.7554/eLife.48401.
  • Banerjee A, Rapin N, Bollinger T, Misra V. 2017. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 7:2232. https://doi.org/10.1038/s41598-017-01513-w.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75.
  • Jacobovitz MR, Rupp S, Voss PA, Gornik SG, Guse A. 2019. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. bioRxiv https://doi.org/10.1101/864579.
  • Babonis LS, Martindale MQ, Ryan JF. 2016. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 16:114. https://doi.org/10.1186/s12862-016-0683-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.