54
Views
30
CrossRef citations to date
0
Altmetric
Article

Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase

, , , , &
Pages 3622-3632 | Received 30 Jan 2015, Accepted 02 Aug 2015, Published online: 20 Mar 2023

REFERENCES

  • Siegel R, Naishadham D, Jemal A. 2012. Cancer statistics, 2012. CA Cancer J Clin 62:10–29. http://dx.doi.org/10.3322/caac.20138.
  • Weinstock MA. 2012. Reducing death from melanoma and standards of evidence. J Invest Dermatol 132:1311–1312. http://dx.doi.org/10.1038/jid.2012.57.
  • Chang AE, Karnell LH, Menck HR. 1998. The National Cancer Data Base report on cutaneous and noncutaneous melanoma—a summary of 84,836 cases from the past decade. Cancer 83:1664–1678. http://dx.doi.org/10.1002/(SICI)1097-0142(19981015)83:8<1664::AID-CNCR23>3.0.CO;2-G.
  • Bray SJ. 2006. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. http://dx.doi.org/10.1038/nrm2009.
  • Gordon WR, Vardar-Ulu D, L'Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C, McArthur DG, Histen G, Mitchell JL, Aster JC, Blacklow SC. 2009. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One 4:e6613. http://dx.doi.org/10.1371/journal.pone.0006613.
  • Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, Israel A. 1998. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A 95:8108–8112. http://dx.doi.org/10.1073/pnas.95.14.8108.
  • Bozkulak EC, Weinmaster G. 2009. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 29:5679–5695. http://dx.doi.org/10.1128/MCB.00406-09.
  • Sulis ML, Saftig P, Ferrando AA. 2011. Redundancy and specificity of the metalloprotease system mediating oncogenic NOTCH1 activation in T-ALL. Leukemia 25:1564–1569. http://dx.doi.org/10.1038/leu.2011.130.
  • Tiyanont K, Wales TE, Aste-Amezaga M, Aster JC, Engen JR, Blacklow SC. 2011. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure 19:546–554. http://dx.doi.org/10.1016/j.str.2011.01.016.
  • van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M. 2009. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284:31018–31027. http://dx.doi.org/10.1074/jbc.M109.006775.
  • Fortini ME. 2002. γ-Secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 3:673–684. http://dx.doi.org/10.1038/nrm910.
  • Artavanis-Tsakonas S, Matsuno K, Fortini ME. 1995. Notch signaling. Science 268:225–232. http://dx.doi.org/10.1126/science.7716513.
  • Egan SE, St-Pierre B, Leow CC. 1998. Notch receptors, partners and regulators: from conserved domains to powerful functions. Curr Top Microbiol Immunol 228:273–324.
  • Hsieh JJD, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD. 1996. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol 16:952–959.
  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. 1995. Signaling downstream of activated mammalian Notch. Nature 377:355–358. http://dx.doi.org/10.1038/377355a0.
  • Kopan R, Goate A. 2000. A common enzyme connects Notch signaling and Alzheimer's disease. Genes Dev 14:2799–2806. http://dx.doi.org/10.1101/gad.836900.
  • Oswald F, Liptay S, Adler G, Schmid RM. 1998. NF-κB2 is a putative target gene of activated Notch-1 via RBP-Jκ. Mol Cell Biol 18:2077–2088.
  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC. 2006. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109. http://dx.doi.org/10.1101/gad.1450406.
  • Wu L, Sun T, Kobayashi K, Gao P, Griffin JD. 2002. Identification of a family of mastermind-like transcriptional coactivators for mammalian Notch receptors. Mol Cell Biol 22:7688–7700. http://dx.doi.org/10.1128/MCB.22.21.7688-7700.2002.
  • Zhou SF, Fujimuro M, Hsieh JJD, Chen L, Miyamoto A, Weinmaster G, Hayward SD. 2000. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol Cell Biol 20:2400–2410. http://dx.doi.org/10.1128/MCB.20.7.2400-2410.2000.
  • Zhou K, Huang L, Zhou Z, Hu C, Liu W, Zhou J, Sun H. 2010. Wnt and Notch signaling pathways selectively regulating hematopoiesis. Ann Hematol 89:749–757. http://dx.doi.org/10.1007/s00277-010-0923-3.
  • Brabletz S, Schmalhofer O, Brabletz T. 2009. Gastrointestinal stem cells in development and cancer. J Pathol 217:307–317. http://dx.doi.org/10.1002/path.2475.
  • Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. 2010. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30:3489–3498. http://dx.doi.org/10.1523/JNEUROSCI.4987-09.2010.
  • Haass NK, Herlyn M. 2005. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10:153–163. http://dx.doi.org/10.1111/j.1087-0024.2005.200407.x.
  • Kumano K, Masuda S, Sata M, Saito T, Lee SY, Sakata-Yanagimoto M, Tomita T, Iwatsubo T, Natsugari H, Kurokawa M, Ogawa S, Chiba S. 2008. Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 21:70–78. http://dx.doi.org/10.1111/j.1755-148X.2007.00423.x.
  • Schouwey K, Beermann F. 2008. The Notch pathway: hair graying and pigment cell homeostasis. Histol Histopathol 23:609–619.
  • Osawa M, Fisher DE. 2008. Notch and melanocytes: diverse outcomes from a single signal. J Invest Dermatol 128:2571–2574. http://dx.doi.org/10.1038/jid.2008.289.
  • Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M, Liu ZJ. 2005. Activation of Notch1 signaling is required for β-catenin-mediated human primary melanoma progression. J Clin Invest 115:3166–3176. http://dx.doi.org/10.1172/JCI25001.
  • Liu ZJ, Xiao M, Balint K, Smalley KSM, Brafford P, Qiu RH, Pinnix CC, Li XL, Herlyn M. 2006. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66:4182–4190. http://dx.doi.org/10.1158/0008-5472.CAN-05-3589.
  • Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ, Brafford PA, Xiao M, Himes B, Zabierowski SE, Yashiro-Ohtani Y, Nathanson KL, Bengston A, Pollock PM, Weeraratna AT, Nickoloff BJ, Pear WS, Capobianco AJ, Herlyn M. 2009. Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res 69:5312–5320. http://dx.doi.org/10.1158/0008-5472.CAN-08-3767.
  • Zhang K, Wong P, Zhang L, Jacobs B, Borden EC, Aster JC, Bedogni B. 2012. A Notch1-neuregulin1 autocrine signaling loop contributes to melanoma growth. Oncogene 31:4609–4618. http://dx.doi.org/10.1038/onc.2011.606.
  • Ma J, Tang XY, Wong PK, Jacobs B, Borden EC, Bedogni B. 2014. Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem 289:8442–8449. http://dx.doi.org/10.1074/jbc.M113.516039.
  • Shaverdashvili K, Wong P, Ma J, Zhang KM, Osman I, Bedogni B. 2014. MT1-MMP modulates melanoma cell dissemination and metastasis through activation of MMP2 and RAC1. Pigment Cell Melanoma Res 27:287–296. http://dx.doi.org/10.1111/pcmr.12201.
  • Yana I, Weiss SJ. 2000. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 11:2387–2401. http://dx.doi.org/10.1091/mbc.11.7.2387.
  • Turner SL, Blair-Zajdel ME, Bunning RA. 2009. ADAMs and ADAMTSs in cancer. Br J Biomed Sci 66:117–128.
  • Anderegg U, Eichenberg T, Parthaune T, Haiduk C, Saalbach A, Milkova L, Ludwig A, Grosche J, Simon JC. 2008. Functions of ADAM10 in human melanoma cells. Exp Dermatol 17:275. (Abstract.)
  • Gangemi R, Amaro A, Gino A, Barisione G, Fabbi M, Pfeffer U, Brizzolara A, Queirolo P, Salvi S, Boccardo S, Gualco M, Spagnolo F, Jager MJ, Mosci C, Rossello A, Ferrini S. 2014. ADAM10 correlates with uveal melanoma metastasis and promotes in vitro invasion. Pigment Cell Melanoma Res 27:1138–1148. http://dx.doi.org/10.1111/pcmr.12306.
  • Lee SB, Schramme A, Doberstein K, Dummer R, Abdel-Bakky MS, Keller S, Altevogt P, Oh ST, Reichrath J, Oxmann D, Pfeilschifter J, Mihic-Probst D, Gutwein P. 2010. ADAM10 is upregulated in melanoma metastasis compared with primary melanoma. J Invest Dermatol 130:763–773. http://dx.doi.org/10.1038/jid.2009.335.
  • Cireap N, Narita D. 2013. Molecular profiling of ADAM12 and ADAM17 genes in human malignant melanoma. Pathol Oncol Res 19:755–762. http://dx.doi.org/10.1007/s12253-013-9639-8.
  • Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F. 2001. Regulation of the α-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 15:1837–1839. http://dx.doi.org/10.1096/fj.01-0007fje.
  • Srour N, Lebel A, McMahon S, Fournier I, Fugere M, Day R, Dubois CM. 2003. TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 554:275–283. http://dx.doi.org/10.1016/S0014-5793(03)01159-1.
  • Schlöndorff J, Becherer JD, Blobel CP. 2000. Intracellular maturation and localization of the tumour necrosis factor α convertase (TACE). Biochem J 347:131–138. http://dx.doi.org/10.1042/bj3470131.
  • Laprise MH, Grondin F, Cayer P, McDonald PP, Dubois CM. 2002. Furin gene (fur) regulation in differentiating human megakaryoblastic Dami cells: involvement of the proximal GATA recognition motif in the P1 promoter and impact on the maturation of furin substrates. Blood 100:3578–3587. http://dx.doi.org/10.1182/blood.V100.10.3578.
  • Ayoubi TAY, Creemers JWM, Roebroek AJM, Vandeven WJM. 1994. Expression of the dibasic proprotein processing enzyme furin is directed by multiple promoters. J Biol Chem 269:9298–9303.
  • Creemers JWM, Siezen RJ, Roebroek AJM, Ayoubi TAY, Huylebroeck D, Vandeven WJM. 1993. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem 268:21826–21834.
  • Reference deleted.
  • Gendron FP, Mongrain S, Laprise P, McMahon S, Dubois CM, Blais M, Asselin C, Rivard N. 2006. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. Am J Physiol Gastrointest Liver Physiol 290:G310–G318. http://dx.doi.org/10.1152/ajpgi.00217.2005.
  • Khatib AM, Siegfried G, Chretien M, Metrakos P, Seidah NG. 2002. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol 160:1921–1935. http://dx.doi.org/10.1016/S0002-9440(10)61140-6.
  • Khatib AM, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah NG. 2001. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 276:30686–30693. http://dx.doi.org/10.1074/jbc.M101725200.
  • Basak A, Chen A, Scamuffa N, Mohottalage D, Basak S, Khatib AM. 2010. Blockade of furin activity and furin-induced tumor cells malignant phenotypes by the chemically synthesized human furin prodomain. Curr Med Chem 17:2214–2221. http://dx.doi.org/10.2174/092986710791331040.
  • Blanchette F, Day R, Dong W, Laprise MH, Dubois CM. 1997. TGFβ1 regulates gene expression of its own converting enzyme furin. J Clin Invest 99:1974–1983. http://dx.doi.org/10.1172/JCI119365.
  • Dickson MC, Slager HG, Duffie E, Mummery CL, Akhurst RJ. 1993. RNA and protein localizations of TGFβ2 in the early mouse embryo suggest an involvement in cardiac development. Development 117:625–639.
  • Lee JE, Pintar J, Efstratiadis A. 1990. Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis. Development 110:151–159.
  • Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB. 2008. Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118:3660–3670. http://dx.doi.org/10.1172/JCI36157.
  • Razorenova OV, Agapova LS, Budanov AV, Ivanov AV, Strunina SM, Chumakov PM. 2005. Retroviral reporter systems for assessing the activity of stress-inducible signal transduction pathways controlled by the p53, HIF-1, and HSF-1 transcription factors. Mol Biol 39:286–293. (In Russian.)
  • Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O'Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA. 2006. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103:18261–18266. http://dx.doi.org/10.1073/pnas.0606108103.
  • Nishimura M, Isaka F, Ishibashi M, Tomita K, Tsuda H, Nakanishi S, Kageyama R. 1998. Structure, chromosomal locus, and promoter of mouse Hes2 gene, a homologue of Drosophila hairy and Enhancer of split. Genomics 49:69–75. http://dx.doi.org/10.1006/geno.1998.5213.
  • Proweller A, Pear WS, Parmacek MS. 2005. Notch signaling represses myocardin-induced smooth muscle cell differentiation. J Biol Chem 280:8994–9004. http://dx.doi.org/10.1074/jbc.M413316200.
  • Buas MF, Kabak S, Kadesch T. 2009. Inhibition of myogenesis by Notch: evidence for multiple pathways. J Cell Physiol 218:84–93. http://dx.doi.org/10.1002/jcp.21571.
  • Reference deleted.
  • Knäuper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G. 1996. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem 271:17124–17131.
  • Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. 1994. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65. http://dx.doi.org/10.1038/370061a0.
  • Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI. 1995. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338.
  • Nichols JT, Miyamoto A, Olsen SL, D'Souza B, Yao C, Weinmaster G. 2007. DSL ligand endocytosis physically dissociates Notch 1 heterodimers before activating proteolysis can occur. J Cell Biol 176:445–458. http://dx.doi.org/10.1083/jcb.200609014.
  • van Tetering G, Vooijs M. 2011. Proteolytic cleavage of Notch: “HIT and RUN. ” Curr Mol Med 11:255–269. http://dx.doi.org/10.2174/156652411795677972.
  • Guimont P, Grondin F, Dubois CM. 2007. Sox9-dependent transcriptional regulation of the proprotein convertase furin. Am J Physiol Cell Physiol 293:C172–C183. http://dx.doi.org/10.1152/ajpcell.00349.2006.
  • Blanchette F, Rudd P, Grondin F, Attisano L, Dubois CM. 2001. Involvement of Smads in TGFβ1-induced furin (fur) transcription. J Cell Physiol 188:264–273. http://dx.doi.org/10.1002/jcp.1116.
  • Chang HM, Cheng JC, Klausen C, Leung PC. 2015. Recombinant BMP4 and BMP7 increase activin A production by up-regulating inhibin βA subunit and furin expression in human granulosa-lutein cells. J Clin Endocrinol Metab 100:E375–E386. http://dx.doi.org/10.1210/jc.2014-3026.
  • Remacle AG, Chekanov AV, Golubkov VS, Rozanov DV, Fugere M, Day R, Strongin AY. 2006. Proprotein convertases and glycosylation regulate MT1-MMP activity. Matrix Biol 25(Suppl 1):S49. http://dx.doi.org/10.1016/j.matbio.2006.08.136.
  • Bedogni B, Powell MB. 2009. Unique transforming properties of Notch1 in human melanocytes. Pigment Cell Melanoma Res 22:702–703. http://dx.doi.org/10.1111/j.1755-148X.2009.00625.x.
  • Bedogni B, Powell MB. 2009. Hypoxia, melanocytes and melanoma—survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174. http://dx.doi.org/10.1111/j.1755-148X.2009.00553.x.
  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A. 2000. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216. http://dx.doi.org/10.1016/S1097-2765(00)80417-7.
  • Hartmann D, De Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Brabant V, Luebke T, Illert AL, von Figura K, Saftig P. 2002. Deficiency for the disintegrin metalloprotease ADAM10 causes disturbed α-secretase function and a Notch deficiency-related phenotype in mice. Neurobiol Aging 23:S183.
  • Krebs LT, Xue YZ, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. 2000. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352.
  • Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. 2005. Essential role of endothelial Notch1 in angiogenesis. Circulation 111:1826–1832. http://dx.doi.org/10.1161/01.CIR.0000160870.93058.DD.
  • Ntziachristos P, Lim JS, Sage J, Aifantis I. 2014. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 25:318–334. http://dx.doi.org/10.1016/j.ccr.2014.02.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.