236
Views
288
CrossRef citations to date
0
Altmetric
Article

AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550

, , , , &
Pages 1931-1942 | Received 24 Feb 2016, Accepted 05 May 2016, Published online: 17 Mar 2023

REFERENCES

  • Sorensen M, Sanz A, Gomez J, Pamplona R, Portero-Otin M, Gredilla R, Barja G. 2006. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res 40:339–347. http://dx.doi.org/10.1080/10715760500250182.
  • Morel Y, Barouki R. 1999. Repression of gene expression by oxidative stress. Biochem J 342(Pt 3):481–496.
  • Lu Y, Cederbaum AI. 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 44:723–738. http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.004.
  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. http://dx.doi.org/10.1006/bbrc.1997.6943.
  • Cullinan SB, Diehl JA. 2004. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117. http://dx.doi.org/10.1074/jbc.M314219200.
  • Huang HC, Nguyen T, Pickett CB. 2002. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277:42769–42774. http://dx.doi.org/10.1074/jbc.M206911200.
  • Niture SK, Jain AK, Jaiswal AK. 2009. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance. J Cell Sci 122:4452–4464. http://dx.doi.org/10.1242/jcs.058537.
  • Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046.
  • Kang KW, Lee SJ, Park JW, Kim SG. 2002. Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62:1001–1010. http://dx.doi.org/10.1124/mol.62.5.1001.
  • Jain AK, Jaiswal AK. 2007. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282:16502–16510. http://dx.doi.org/10.1074/jbc.M611336200.
  • Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A. 2006. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281:14841–14851. http://dx.doi.org/10.1074/jbc.M513737200.
  • Sun Z, Huang Z, Zhang DD. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588. http://dx.doi.org/10.1371/journal.pone.0006588.
  • Jain AK, Jaiswal AK. 2006. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J Biol Chem 281:12132–12142. http://dx.doi.org/10.1074/jbc.M511198200.
  • Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. http://dx.doi.org/10.1038/nrm3311.
  • Lage R, Dieguez C, Vidal-Puig A, Lopez M. 2008. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549. http://dx.doi.org/10.1016/j.molmed.2008.09.007.
  • Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. 2010. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285:33154–33164. http://dx.doi.org/10.1074/jbc.M110.143685.
  • Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. 2006. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127. http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0943.
  • Park CE, Yun H, Lee EB, Min BI, Bae H, Choe W, Kang I, Kim SS, Ha J. 2010. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13:815–820. http://dx.doi.org/10.1089/jmf.2009.1359.
  • Liu XM, Peyton KJ, Shebib AR, Wang H, Korthuis RJ, Durante W. 2011. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am J Physiol Heart Circ Physiol 300:H84–H93. http://dx.doi.org/10.1152/ajpheart.00749.2010.
  • Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E, Rosello-Catafau J. 2001. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34:1164–1173. http://dx.doi.org/10.1053/jhep.2001.29197.
  • Ido Y, Carling D, Ruderman N. 2002. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51:159–167. http://dx.doi.org/10.2337/diabetes.51.1.159.
  • Shin SM, Cho IJ, Kim SG. 2009. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol 76:884–895. http://dx.doi.org/10.1124/mol.109.058479.
  • Shin SM, Kim SG. 2009. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Mol Pharmacol 75:242–253. http://dx.doi.org/10.1124/mol.108.051128.
  • Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C, Caldarera CM. 1998. Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun 243:821–826. http://dx.doi.org/10.1006/bbrc.1998.8154.
  • Towler MC, Hardie DG. 2007. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341. http://dx.doi.org/10.1161/01.RES.0000256090.42690.05.
  • Ki SH, Cho IJ, Choi DW, Kim SG. 2005. Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPbeta TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Mol Cell Biol 25:4150–4165. http://dx.doi.org/10.1128/MCB.25.10.4150-4165.2005.
  • Bossi A, Lehner B. 2009. Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260.
  • Piya S, Shrestha SK, Binder B, Stewart CN, Jr, Hewezi T. 2014. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front Plant Sci 5:744.
  • Kwak MK, Itoh K, Yamamoto M, Kensler TW. 2002. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22:2883–2892. http://dx.doi.org/10.1128/MCB.22.9.2883-2892.2002.
  • Hardie DG. 2011. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908. http://dx.doi.org/10.1101/gad.17420111.
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. http://dx.doi.org/10.1016/j.molcel.2008.03.003.
  • Jain AK, Bloom DA, Jaiswal AK. 2005. Nuclear import and export signals in control of Nrf2. J Biol Chem 280:29158–29168. http://dx.doi.org/10.1074/jbc.M502083200.
  • Fornerod M, Ohno M, Yoshida M, Mattaj IW. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060. http://dx.doi.org/10.1016/S0092-8674(00)80371-2.
  • Kazgan N, Williams T, Forsberg LJ, Brenman JE. 2010. Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 21:3433–3442. http://dx.doi.org/10.1091/mbc.E10-04-0347.
  • Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. 2007. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119. http://dx.doi.org/10.1074/jbc.M705325200.
  • Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF. 2009. Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet 18:3048–3065. http://dx.doi.org/10.1093/hmg/ddp243.
  • Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y, Kurihara Y, Kurihara H, Asano T. 2008. AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem 283:33902–33910. http://dx.doi.org/10.1074/jbc.M802537200.
  • Choi SH, Kim YW, Kim SG. 2010. AMPK-mediated GSK3beta inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol 79:1352–1362. http://dx.doi.org/10.1016/j.bcp.2009.12.011.
  • Stambolic V, Woodgett JR. 1994. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303(Pt 3):701–704. http://dx.doi.org/10.1042/bj3030701.
  • MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, Hundal HS. 2005. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem 280:9509–9518. http://dx.doi.org/10.1074/jbc.M411648200.
  • Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR. 2007. Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971. http://dx.doi.org/10.1016/j.devcel.2007.04.001.
  • Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR. 1992. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114:147–162.
  • Ferrari R, Alfieri O, Curello S, Ceconi C, Cargnoni A, Marzollo P, Pardini A, Caradonna E, Visioli O. 1990. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 81:201–211. http://dx.doi.org/10.1161/01.CIR.81.1.201.
  • Hardie DG, Scott JW, Pan DA, Hudson ER. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120. http://dx.doi.org/10.1016/S0014-5793(03)00560-X.
  • Ullman KS, Powers MA, Forbes DJ. 1997. Nuclear export receptors: from importin to exportin. Cell 90:967–970. http://dx.doi.org/10.1016/S0092-8674(00)80361-X.
  • Li W, Jain MR, Chen C, Yue X, Hebbar V, Zhou R, Kong AN. 2005. Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J Biol Chem 280:28430–28438. http://dx.doi.org/10.1074/jbc.M410601200.
  • Salt I, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, Hardie DG. 1998. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J 334(Pt 1):177–187. http://dx.doi.org/10.1042/bj3340177.
  • Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. 1999. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem 72:1707–1716.
  • Kodiha M, Rassi JG, Brown CM, Stochaj U. 2007. Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK–>ERK1/2 pathway. Am J Physiol Cell Physiol 293:C1427–1436. http://dx.doi.org/10.1152/ajpcell.00176.2007.
  • Kobayashi M, Yamamoto M. 2005. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394. http://dx.doi.org/10.1089/ars.2005.7.385.
  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. 2011. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133. http://dx.doi.org/10.1128/MCB.01204-10.
  • Wang L, Chen Y, Sternberg P, Cai J. 2008. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest Ophthalmol Vis Sci 49:1671–1678. http://dx.doi.org/10.1167/iovs.07-1099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.