12
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Evidence of a Prion-Like Transmission of p53 Amyloid in Saccharomyces cerevisiae

, &
Article: e00118-17 | Received 17 Mar 2017, Accepted 11 Jun 2017, Published online: 17 Mar 2023

REFERENCES

  • Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J. 2003. The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141. https://doi.org/10.1016/j.jmb.2003.08.008.
  • Oren M. 1999. Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031–36034. https://doi.org/10.1074/jbc.274.51.36031.
  • Morales R, Green KM, Soto C. 2009. Cross currents in protein misfolding disorders: interactions and therapy. CNS Neurol Disord Drug Targets 8:363–371. https://doi.org/10.2174/187152709789541998.
  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. 1998. Diffusible, nonfibrillar ligands derived from Aβ(1-42) are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453. https://doi.org/10.1073/pnas.95.11.6448.
  • Watts JC, Balachandran A, Westaway D. 2006. The expanding universe of prion diseases. PLoS Pathog 2:e26. https://doi.org/10.1371/journal.ppat.0020026.
  • Harris DA, True HL. 2006. New insights into prion structure and toxicity. Neuron 50:353–357. https://doi.org/10.1016/j.neuron.2006.04.020.
  • Coustou V, Deleu C, Saupe S, Begueret J. 1997. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 94:9773–9778. https://doi.org/10.1073/pnas.94.18.9773.
  • Selkoe DJ. 2004. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 6:1054–1061. https://doi.org/10.1038/ncb1104-1054.
  • Muller PAJ, Vousden KH, Norman JC. 2011. p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218. https://doi.org/10.1083/jcb.201009059.
  • Ano Bom APD, Rangel LP, Costa DCF, de Oliveira GAP, Sanches D, Braga CA, Gava LM, Ramos CHI, Cepeda AOT, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL. 2012. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 287:28152–28162. https://doi.org/10.1074/jbc.M112.340638.
  • Kraiss S, Lorenz A, Montenarh M. 1992. Protein-protein interactions in high molecular weight forms of the transformation-related phosphoprotein p53. Biochim Biophys Acta 1119:11–18. https://doi.org/10.1016/0167-4838(92)90227-5.
  • Forget KJ, Tremblay G, Roucou X. 2013. p53 aggregates penetrate cells and induce the co-aggregation of intracellular p53. PLoS One 8:e69242. https://doi.org/10.1371/journal.pone.0069242.
  • Silva JL, Gallo CVDM, Costa DCF, Rangel LP. 2014. Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 39:260–267. https://doi.org/10.1016/j.tibs.2014.04.001.
  • Aguzzi A. 2009. Cell biology: beyond the prion principle. Nature 459:924–925. https://doi.org/10.1038/459924a.
  • Ghosh S, Ghosh D, Ranganathan S, Anoop A, Kumar SP, Jha NN, Padinhateeri R, Maji SK. 2014. Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53. Biochemistry 53:5995–6010. https://doi.org/10.1021/bi500825d.
  • Scharer E, Iggo R. 1992. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res 20:1539–1545. https://doi.org/10.1093/nar/20.7.1539.
  • Abdelmoula-Souissi S, Delahodde A, Bolotin-Fukuhara M, Gargouri A, Mokdad-Gargouri R. 2011. Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion. Apoptosis 16:746–756. https://doi.org/10.1007/s10495-011-0607-z.
  • Xue W-F, Homans SW, Radford SE. 2008. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A 105:8926–8931. https://doi.org/10.1073/pnas.0711664105.
  • Collins SR, Douglass A, Vale RD, Weissman JS. 2004. Mechanism of prion propagation: amyloid growth occurs by monomer aDdition. PLoS Biol 2:e321. https://doi.org/10.1371/journal.pbio.0020321.
  • Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG. 2007. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18. https://doi.org/10.1186/1750-1326-2-18.
  • Hadj Amor IY, Smaoui K, Chaabene I, Mabrouk I, Djemal L, Elleuch H, Allouche M, Mokdad-Gargouri R, Gargouri A. 2008. Human p53 induces cell death and downregulates thioredoxin expression in Saccharomyces cerevisiae. FEMS Yeast Res 8:1254–1262. https://doi.org/10.1111/j.1567-1364.2008.00445.x.
  • Selivanova G, Ryabchenko L, Jansson E, Iotsova V, Wiman KG. 1999. Reactivation of Mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol 19:3395–3402. https://doi.org/10.1128/MCB.19.5.3395.
  • Alberti S, Halfmann R, Lindquist S. 2010. Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol 470:709–734. https://doi.org/10.1016/S0076-6879(10)70030-6.
  • Hofmann JP, Denner P, Nussbaum-Krammer C, Kuhn P-H, Suhre MH, Scheibel T, Lichtenthaler SF, Schatzl HM, Bano D, Vorberg IM. 2013. Cell-to-cell propagation of infectious cytosolic protein aggregates. Proc Natl Acad Sci U S A 110:5951–5956. https://doi.org/10.1073/pnas.1217321110.
  • Sondheimer N, Lindquist S. 2000. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172. https://doi.org/10.1016/S1097-2765(00)80412-8.
  • Li L, Kowal AS. 2012. Environmental regulation of prions in yeast. PLoS Pathog 8:e1002973. https://doi.org/10.1371/journal.ppat.1002973.
  • Edskes HK, Khamar HJ, Winchester C-L, Greenler AJ, Zhou A, McGlinchey RP, Gorkovskiy A, Wickner RB. 2014. Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi. Genetics 198:605–616.
  • Park Y-N, Zhao X, Yim Y-I, Todor H, Ellerbrock R, Reidy M, Eisenberg E, Masison DC, Greene LE. 2014. Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds. Eukaryot Cell 13:635–647. https://doi.org/10.1128/EC.00300-13.
  • Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF. 2017. Over-expression of the molecular chaperone Hsp104 in Saccharomyces cerevisiae results in the malpartition of [PSI+] propagons. Mol Microbiol 104:125–143. https://doi.org/10.1111/mmi.13617.
  • Ness F, Ferreira P, Cox BS, Tuite MF. 2002. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol Cell Biol 22:5593–5605. https://doi.org/10.1128/MCB.22.15.5593-5605.2002.
  • Eaglestone SS, Ruddock LW, Cox BS, Tuite MF. 2000. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97:240–244. https://doi.org/10.1073/pnas.97.1.240.
  • Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJT, Tuite MF. 2007. Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proc Natl Acad Sci U S A 104:11688–11693. https://doi.org/10.1073/pnas.0701392104.
  • Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO. 2001. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 21:4656–4669. https://doi.org/10.1128/MCB.21.14.4656-4669.2001.
  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884. https://doi.org/10.1126/science.7754373.
  • Ross CA, Poirier MA. 2004. Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. https://doi.org/10.1038/nm1066.
  • Uversky VN. 2010. Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953. https://doi.org/10.1111/j.1742-4658.2010.07721.x.
  • Winklhofer KF, Tatzelt J, Haass C. 2008. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349.
  • Ballatore C, Lee VM-Y, Trojanowski JQ. 2007. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672.
  • Cobb NJ, Surewicz WK. 2009. Prion diseases and their biochemical mechanisms. Biochemistry 48:2574–2585. https://doi.org/10.1021/bi900108v.
  • Price DL, Borchelt DR, Sisodia SS. 1993. Alzheimer disease and the prion disorders amyloid beta-protein and prion protein amyloidoses. Proc Natl Acad Sci U S A 90:6381–6384. https://doi.org/10.1073/pnas.90.14.6381.
  • Brundin P, Melki R, Kopito R. 2010. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307. https://doi.org/10.1038/nrm2873.
  • Ishimaru D, Andrade LR, Teixeira LSP, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmuller G, Foguel D, Silva JL. 2003. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022–9027. https://doi.org/10.1021/bi034218k.
  • Wang G, Fersht AR. 2015. Propagation of aggregated p53: cross-reaction and coaggregation vs. seeding. Proc Natl Acad Sci U S A 112:2443–2448. https://doi.org/10.1073/pnas.1500262112.
  • Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K, Gjoni J, Hass T, Galal R, Graefen M, Haese A, Simon R, Huhne-Simon J, Koop C, Korbel J, Weischenfeld J, Huland H, Sauter G, Quaas A, Wilczak W, Tsourlakis M-C, Minner S, Schlomm T. 2014. Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int J Cancer 135:1369–1380. https://doi.org/10.1002/ijc.28784.
  • Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP, Silva JL. 2016. Aggregation and prion-like properties of misfolded tumor suppressors: is cancer a prion disease? Cold Spring Harb Perspect Biol 8:a023614. https://doi.org/10.1101/cshperspect.a023614.
  • Pereira C, Bessa C, Soares J, Leão M, Saraiva L. 2012. Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012:941232. https://doi.org/10.1155/2012/941232.
  • Helsen CW, Glover JR. 2012. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 287:542–556. https://doi.org/10.1074/jbc.M111.302869.
  • Winkler J, Tyedmers J, Bukau B, Mogk A. 2012. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol 198:387–404. https://doi.org/10.1083/jcb.201201074.
  • Moll UM, LaQuaglia M, Benard J, Riou G. 1995. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92:4407–4411. https://doi.org/10.1073/pnas.92.10.4407.
  • Mori N, Delsite R, Natarajan K, Kulawiec M, Bhujwalla ZM, Singh KK. 2004. Loss of p53 function in colon cancer cells results in increased phosphocholine and total choline. Mol Imaging 3:319–323. https://doi.org/10.1162/1535350042973517.
  • Laurie NA, Donovan SL, Shih C-S, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine J-C, Jochemsen AG, Dyer MA. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66. https://doi.org/10.1038/nature05194.
  • Lee S-H, Woo T-G, Lee S-J, Kim J-S, Ha N-C, Park B-J. 2013. Extracellular p53 fragment re-enters K-Ras mutated cells through the caveolin-1 dependent early endosomal system. Oncotarget 4:2523–2531. https://doi.org/10.18632/oncotarget.1550.
  • Lee S-H, Lee S-J, Jung YS, Xu Y, Kang HS, Ha N-C, Park B-J. 2009. Blocking of p53-snail binding, promoted by oncogenic K-Ras, recovers p53 expression and function. Neoplasia 11:22–31. https://doi.org/10.1593/neo.81006.
  • Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962. https://doi.org/10.1002/yea.1142.
  • Mehta GD, Agarwal M, Ghosh SK. 2014. Functional characterization of kinetochore protein, Ctf19 in meiosis, I: an implication of differential impact of Ctf19 on the assembly of mitotic and meiotic kinetochores in Saccharomyces cerevisiae. Mol Microbiol 91:1179–1199. https://doi.org/10.1111/mmi.12527.
  • Chomczynski P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–534, 536–537.
  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW. 2002. Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci U S A 99(Suppl 4):S16392–S16399.
  • Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. 1970. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol 52:323–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.