44
Views
13
CrossRef citations to date
0
Altmetric
Minireview

Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications

, , &
Pages 1734-1739 | Published online: 17 Mar 2023

REFERENCES

  • Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. http://dx.doi.org/10.1146/annurev.cellbio.14.1.59.
  • Clevers H, Nusse R. 2012. Wnt/β-catenin signaling and disease. Cell 149:1192–1205. http://dx.doi.org/10.1016/j.cell.2012.05.012.
  • Sunaga N, Kohno T, Kolligs FT, Fearon ER, Saito R, Yokota J. 2001. Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer 30:316–321. http://dx.doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1097>3.0.CO;2-9.
  • Miyoshi K, Hennighausen L. 2003. Beta-catenin: a transforming actor on many stages. Breast Cancer Res 5:63–68. http://dx.doi.org/10.1186/bcr566.
  • Li H, Pamukcu R, Thompson WJ. 2002. Beta-catenin signaling: therapeutic strategies in oncology. Cancer Biol Ther 1:621–625. http://dx.doi.org/10.4161/cbt.309.
  • de la Taille A, Rubin MA, Chen MW, Vacherot F, de Medina SG, Burchardt M, Buttyan R, Chopin D. 2003. Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin Cancer Res 9:1801–1807.
  • Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA. 2004. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356. http://dx.doi.org/10.1002/cncr.20518.
  • Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE. 2008. Alterations in beta-catenin expression and localization in prostate cancer. Prostate 68:1196–1205. http://dx.doi.org/10.1002/pros.20780.
  • Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. 2015. Regulation of autophagy of prostate cancer cells by β-catenin signaling. Cell Physiol Biochem 35:926–932. http://dx.doi.org/10.1159/000369749.
  • Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, Li MC, Lin YH. 2007. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol 14:1034–1039. http://dx.doi.org/10.1111/j.1442-2042.2007.01866.x.
  • Zhao JH, Luo Y, Jiang YG, He DL, Wu CT. 2011. Knockdown of β-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Invest 29:377–382. http://dx.doi.org/10.3109/07357907.2010.512595.
  • Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ. 2011. Wnt/β-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30:1868–1879. http://dx.doi.org/10.1038/onc.2010.560.
  • Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y. 2009. Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602:8–14. http://dx.doi.org/10.1016/j.ejphar.2008.10.053.
  • Song GY, Lee JH, Cho M, Park BS, Kim DE, Oh S. 2007. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin. Mol Pharmacol 72:1599–1606. http://dx.doi.org/10.1124/mol.107.040253.
  • Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM, Chen YL. 2013. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 34:530–538. http://dx.doi.org/10.1093/carcin/bgs371.
  • Verras M, Sun Z. 2006. Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett 237:22–32. http://dx.doi.org/10.1016/j.canlet.2005.06.004.
  • Cronauer MV, Schulz WA, Ackermann R, Burchardt M. 2005. Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. Int J Oncol 26:1033–1040.
  • Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B, Turner GD, Brewster SF, Bodmer WF. 2009. Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol 56:486–494. http://dx.doi.org/10.1016/j.eururo.2008.05.029.
  • Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z. 2002. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277:11336–11344. http://dx.doi.org/10.1074/jbc.M111962200.
  • Zhu H, Mazor M, Kawano Y, Walker MM, Leung HY, Armstrong K, Waxman J, Kypta RM. 2004. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res 64:7918–7926. http://dx.doi.org/10.1158/0008-5472.CAN-04-2704.
  • Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA, Gottardis MM, Attar RM. 2008. The androgen receptor can signal through Wnt/beta-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 9:4. http://dx.doi.org/10.1186/1471-2121-9-4.
  • Wang G, Wang J, Sadar MD. 2008. Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res 68:9918–9927. http://dx.doi.org/10.1158/0008-5472.CAN-08-1718.
  • Jung SJ, Oh S, Lee GT, Chung J, Min K, Yoon J, Kim W, Ryu DS, Kim IY, Kang DI. 2013. Clinical significance of Wnt/β-catenin signalling and androgen receptor expression in prostate cancer. World J Mens Health 31:36–46. http://dx.doi.org/10.5534/wjmh.2013.31.1.36.
  • Lee E, Madar A, David G, Garabedian MJ, Dasgupta R, Logan SK. 2013. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc Natl Acad Sci U S A 110:15710–15715. http://dx.doi.org/10.1073/pnas.1218168110.
  • Wan X, Liu J, Lu JF, Tzelepi V, Yang J, Starbuck MW, Diao L, Wang J, Efstathiou E, Vazquez ES, Troncoso P, Maity SN, Navone NM. 2012. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res 18:726–736. http://dx.doi.org/10.1158/1078-0432.CCR-11-2521.
  • Ohigashi T, Mizuno R, Nakashima J, Marumo K, Murai M. 2005. Inhibition of Wnt signaling downregulates Akt activity and induces chemosensitivity in PTEN-mutated prostate cancer cells. Prostate 62:61–68. http://dx.doi.org/10.1002/pros.20117.
  • Mulholland DJ, Dedhar S, Wu H, Nelson CC. 2006. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25:329–337. http://dx.doi.org/10.1038/sj.onc.1209020.
  • Kumar S, Kim J. 2015. PLK-1 targeted inhibitors and their potential against tumorigenesis. Biomed Res Int 2015:705745. http://dx.doi.org/10.1155/2015/705745.
  • Chase D, Serafinas C, Ashcroft N, Kosinski M, Longo D, Ferris DK, Golden A. 2000. The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 26:26–41. http://dx.doi.org/10.1002/(SICI)1526-968X(200001)26:1<26::AID-GENE6>3.0.CO;2-O.
  • van Vugt MA, van de Weerdt BC, Vader G, Janssen H, Calafat J, Klompmaker R, Wolthuis RM, Medema RH. 2004. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J Biol Chem 279:36841–36854. http://dx.doi.org/10.1074/jbc.M313681200.
  • Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK. 2006. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 349:144–152. http://dx.doi.org/10.1016/j.bbrc.2006.08.028.
  • Wolf G, Elez R, Doermer A, Holtrich U, Ackermann H, Stutte HJ, Altmannsberger HM, Rübsamen-Waigmann H, Strebhardt K. 1997. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14:543–549. http://dx.doi.org/10.1038/sj.onc.1200862.
  • Wang ZX, Xue D, Liu ZL, Lu BB, Bian HB, Pan X, Yin YM. 2012. Overexpression of polo-like kinase 1 and its clinical significance in human non-small cell lung cancer. Int J Biochem Cell Biol 44:200–210. http://dx.doi.org/10.1016/j.biocel.2011.10.017.
  • Knecht R, Elez R, Oechler M, Solbach C, von Ilberg C, Strebhardt K. 1999. Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res 59:2794–2797.
  • Tokumitsu Y, Mori M, Tanaka S, Akazawa K, Nakano S, Niho Y. 1999. Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol 15:687–692.
  • Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y, Du XL, Luo ML, Xu X, Han YL, Cai Y, Zhang ZQ, Zhan QM, Wang MR. 2009. Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 124:578–588. http://dx.doi.org/10.1002/ijc.23990.
  • Zhao C, Gong L, Li W, Chen L. 2010. Overexpression of Plk1 promotes malignant progress in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 136:9–16. http://dx.doi.org/10.1007/s00432-009-0630-4.
  • Kneisel L, Strebhardt K, Bernd A, Wolter M, Binder A, Kaufmann R. 2002. Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29:354–358. http://dx.doi.org/10.1034/j.1600-0560.2002.290605.x.
  • Strebhardt K, Kneisel L, Linhart C, Bernd A, Kaufmann R. 2000. Prognostic value of pololike kinase expression in melanomas. JAMA 283:479–480. http://dx.doi.org/10.1001/jama.283.4.479.
  • Liu L, Zhang M, Zou P. 2008. Polo-like kinase 1 as a new target for non-Hodgkin's lymphoma treatment. Oncology 74:96–103. http://dx.doi.org/10.1159/000139137.
  • Mito K, Kashima K, Kikuchi H, Daa T, Nakayama I, Yokoyama S. 2005. Expression of Polo-like kinase (PLK1) in non-Hodgkin's lymphomas. Leuk Lymphoma 46:225–231. http://dx.doi.org/10.1080/10428190400015709.
  • Liu L, Zhang M, Zou P. 2008. Expression of PLK1 and survivin in non-Hodgkin's lymphoma treated with CHOP. Acta Pharmacol Sin 29:371–375. http://dx.doi.org/10.1111/j.1745-7254.2008.00750.x.
  • Stutz N, Nihal M, Wood GS. 2011. Polo-like kinase 1 (Plk1) in cutaneous T-cell lymphoma. Br J Dermatol 164:814–821. http://dx.doi.org/10.1111/j.1365-2133.2010.10128.x.
  • Knecht R, Oberhauser C, Strebhardt K. 2000. PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89:535–536. http://dx.doi.org/10.1002/1097-0215(20001120)89:6<535::AID-IJC12>3.0.CO;2-E.
  • Weichert W, Denkert C, Schmidt M, Gekeler V, Wolf G, Köbel M, Dietel M, Hauptmann S. 2004. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 90:815–821. http://dx.doi.org/10.1038/sj.bjc.6601610.
  • Takai N, Miyazaki T, Fujisawa K, Nasu K, Hamanaka R, Miyakawa I. 2001. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage. Cancer Lett 164:41–49. http://dx.doi.org/10.1016/S0304-3835(00)00703-5.
  • Takai N, Miyazaki T, Fujisawa K, Nasu K, Hamanaka R, Miyakawa I. 2001. Polo-like kinase (PLK) expression in endometrial carcinoma. Cancer Lett 169:41–49. http://dx.doi.org/10.1016/S0304-3835(01)00522-5.
  • Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ. 2001. Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol 8:729–740. http://dx.doi.org/10.1007/s10434-001-0729-6.
  • Takahashi T, Sano B, Nagata T, Kato H, Sugiyama Y, Kunieda K, Kimura M, Okano Y, Saji S. 2003. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci 94:148–152. http://dx.doi.org/10.1111/j.1349-7006.2003.tb01411.x.
  • Weichert W, Kristiansen G, Schmidt M, Gekeler V, Noske A, Niesporek S, Dietel M, Denkert C. 2005. Polo-like kinase 1 expression is a prognostic factor in human colon cancer. World J Gastroenterol 11:5644–5650. http://dx.doi.org/10.3748/wjg.v11.i36.5644.
  • Tut TG, Lim SH, Dissanayake IU, Descallar J, Chua W, Ng W, de Souza P, Shin JS, Lee CS. 2015. Upregulated polo-like kinase 1 expression correlates with inferior survival outcomes in rectal cancer. PLoS One 10:e0129313. http://dx.doi.org/10.1371/journal.pone.0129313.
  • Yamada S, Ohira M, Horie H, Ando K, Takayasu H, Suzuki Y, Sugano S, Hirata T, Goto T, Matsunaga T, Hiyama E, Hayashi Y, Ando H, Suita S, Kaneko M, Sasaki F, Hashizume K, Ohnuma N, Nakagawara A. 2004. Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 23:5901–5911. http://dx.doi.org/10.1038/sj.onc.1207782.
  • He ZL, Zheng H, Lin H, Miao XY, Zhong DW. 2009. Overexpression of polo-like kinase1 predicts a poor prognosis in hepatocellular carcinoma patients. World J Gastroenterol 15:4177–4182. http://dx.doi.org/10.3748/wjg.15.4177.
  • Ito Y, Miyoshi E, Sasaki N, Kakudo K, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Matsuura N, Kuma K, Miyauchi A. 2004. Polo-like kinase 1 overexpression is an early event in the progression of papillary carcinoma. Br J Cancer 90:414–418. http://dx.doi.org/10.1038/sj.bjc.6601540.
  • Ito Y, Nakamura Y, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Kakudo K, Miyauchi A. 2005. Polo-like kinase 1 expression in medullary carcinoma of the thyroid: its relationship with clinicopathological features. Pathobiology 72:186–190. http://dx.doi.org/10.1159/000086788.
  • Weichert W, Schmidt M, Jacob J, Gekeler V, Langrehr J, Neuhaus P, Bahra M, Denkert C, Dietel M, Kristiansen G. 2005. Overexpression of Polo-like kinase 1 is a common and early event in pancreatic cancer. Pancreatology 5:259–265. http://dx.doi.org/10.1159/000085280.
  • Weichert W, Ullrich A, Schmidt M, Gekeler V, Noske A, Niesporek S, Buckendahl AC, Dietel M, Denkert C. 2006. Expression patterns of polo-like kinase 1 in human gastric cancer. Cancer Sci 97:271–276. http://dx.doi.org/10.1111/j.1349-7006.2006.00170.x.
  • Kanaji S, Saito H, Tsujitani S, Matsumoto S, Tatebe S, Kondo A, Ozaki M, Ito H, Ikeguchi M. 2006. Expression of polo-like kinase 1 (PLK1) protein predicts the survival of patients with gastric carcinoma. Oncology 70:126–133. http://dx.doi.org/10.1159/000093003.
  • Zhang Z, Zhang G, Kong C. 2013. High expression of polo-like kinase 1 is associated with the metastasis and recurrence in urothelial carcinoma of bladder. Urol Oncol 31:1222–1230. http://dx.doi.org/10.1016/j.urolonc.2011.11.028.
  • Yamamoto Y, Matsuyama H, Kawauchi S, Matsumoto H, Nagao K, Ohmi C, Sakano S, Furuya T, Oga A, Naito K, Sasaki K. 2006. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 70:231–237. http://dx.doi.org/10.1159/000094416.
  • Renner AG, Dos Santos C, Recher C, Bailly C, Créancier L, Kruczynski A, Payrastre B, Manenti S. 2009. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood 114:659–662. http://dx.doi.org/10.1182/blood-2008-12-195867.
  • Cheng MW, Wang BC, Weng ZQ, Zhu XW. 2012. Clinicopathological significance of Polo-like kinase 1 (PLK1) expression in human malignant glioma. Acta Histochem 114:503–509. http://dx.doi.org/10.1016/j.acthis.2011.09.004.
  • Zhang G, Zhang Z, Liu Z. 2013. Polo-like kinase 1 is overexpressed in renal cancer and participates in the proliferation and invasion of renal cancer cells. Tumour Biol 34:1887–1894. http://dx.doi.org/10.1007/s13277-013-0732-0.
  • Weichert W, Kristiansen G, Winzer KJ, Schmidt M, Gekeler V, Noske A, Müller BM, Niesporek S, Dietel M, Denkert C. 2005. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications. Virchows Arch 446:442–450. http://dx.doi.org/10.1007/s00428-005-1212-8.
  • King SI, Purdie CA, Bray SE, Quinlan PR, Jordan LB, Thompson AM, Meek DW. 2012. Immunohistochemical detection of Polo-like kinase-1 (PLK1) in primary breast cancer is associated with TP53 mutation and poor clinical outcome. Breast Cancer Res 14:R40. http://dx.doi.org/10.1186/bcr3136.
  • Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S, Fukuzawa M, Nakagawara A. 2004. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279:25549–25561. http://dx.doi.org/10.1074/jbc.M314182200.
  • Dias SS, Hogan C, Ochocka AM, Meek DW. 2009. Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover. FEBS Lett 583:3543–3548. http://dx.doi.org/10.1016/j.febslet.2009.09.057.
  • Liu XS, Li H, Song B, Liu X. 2010. Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 11:626–632. http://dx.doi.org/10.1038/embor.2010.90.
  • Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X. 2009. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem 284:18588–18592. http://dx.doi.org/10.1074/jbc.C109.001560.
  • McKenzie L, King S, Marcar L, Nicol S, Dias SS, Schumm K, Robertson P, Bourdon JC, Perkins N, Fuller-Pace F, Meek DW. 2010. p53-dependent repression of polo-like kinase-1 (PLK1). Cell Cycle 9:4200–4212. http://dx.doi.org/10.4161/cc.9.20.13532.
  • Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K, Loening S, Dietel M, Kristiansen G. 2004. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 60:240–245. http://dx.doi.org/10.1002/pros.20050.
  • Reagan-Shaw S, Ahmad N. 2005. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J 19:611–613.
  • Deeraksa A, Pan J, Sha Y, Liu XD, Eissa NT, Lin SH, Yu-Lee LY. 2013. Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene 32:2973–2983. http://dx.doi.org/10.1038/onc.2012.309.
  • Fan Y, Zheng S, Xu ZF, Ding JY. 2005. Apoptosis induction with polo-like kinase-1 antisense phosphorothioate oligodeoxynucleotide of colon cancer cell line SW480. World J Gastroenterol 11:4596–4599. http://dx.doi.org/10.3748/wjg.v11.i29.4596.
  • Chen XH, Lan B, Qu Y, Zhang XQ, Cai Q, Liu BY, Zhu ZG. 2006. Inhibitory effect of Polo-like kinase 1 depletion on mitosis and apoptosis of gastric cancer cells. World J Gastroenterol 12:29–35. http://dx.doi.org/10.3748/wjg.v12.i1.29.
  • Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K, Yokota A, Segawa H, Toda Y, Kageyama S, Yoshiki T, Okada Y, Maekawa T. 2005. Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115:978–985. http://dx.doi.org/10.1172/JCI23043.
  • Bu Y, Yang Z, Li Q, Song F. 2008. Silencing of polo-like kinase (Plk) 1 via siRNA causes inhibition of growth and induction of apoptosis in human esophageal cancer cells. Oncology 74:198–206. http://dx.doi.org/10.1159/000151367.
  • Kawata E, Ashihara E, Kimura S, Takenaka K, Sato K, Tanaka R, Yokota A, Kamitsuji Y, Takeuchi M, Kuroda J, Tanaka F, Yoshikawa T, Maekawa T. 2008. Administration of PLK-1 small interfering RNA with atelocollagen prevents the growth of liver metastases of lung cancer. Mol Cancer Ther 7:2904–2912. http://dx.doi.org/10.1158/1535-7163.MCT-08-0473.
  • Schmit TL, Zhong W, Setaluri V, Spiegelman VS, Ahmad N. 2009. Targeted depletion of Polo-like kinase (Plk) 1 through lentiviral shRNA or a small-molecule inhibitor causes mitotic catastrophe and induction of apoptosis in human melanoma cells. J Investig Dermatol 129:2843–2853. http://dx.doi.org/10.1038/jid.2009.172.
  • Hu K, Lee C, Qiu D, Fotovati A, Davies A, Abu-Ali S, Wai D, Lawlor ER, Triche TJ, Pallen CJ, Dunn SE. 2009. Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 8:3024–3035. http://dx.doi.org/10.1158/1535-7163.MCT-09-0365.
  • Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Paulaq Queiroz RG, Machado HR, Carlotti CG, Jr, Neder L, Scrideli CA, Tone LG. 2013. Polo-like kinase 1 inhibition causes decreased proliferation by cell cycle arrest, leading to cell death in glioblastoma. Cancer Gene Ther 20:499–506. http://dx.doi.org/10.1038/cgt.2013.46.
  • Nihal M, Stutz N, Schmit T, Ahmad N, Wood GS. 2011. Polo-like kinase 1 (Plk1) is expressed by cutaneous T-cell lymphomas (CTCLs), and its downregulation promotes cell cycle arrest and apoptosis. Cell Cycle 10:1303–1311. http://dx.doi.org/10.4161/cc.10.8.15353.
  • Xu WJ, Zhang S, Yang Y, Zhang N, Wang W, Liu SY, Tian HW, Dai L, Xie Q, Zhao X, Wei YQ, Deng HX. 2011. Efficient inhibition of human colorectal carcinoma growth by RNA interference targeting polo-like kinase 1 in vitro and in vivo. Cancer Biother Radiopharm 26:427–436. http://dx.doi.org/10.1089/cbr.2010.0922.
  • Seth S, Matsui Y, Fosnaugh K, Liu Y, Vaish N, Adami R, Harvie P, Johns R, Severson G, Brown T, Takagi A, Bell S, Chen Y, Chen F, Zhu T, Fam R, Maciagiewicz I, Kwang E, McCutcheon M, Farber K, Charmley P, Houston ME, Jr, So A, Templin MV, Polisky B. 2011. RNAi-based therapeutics targeting survivin and PLK1 for treatment of bladder cancer. Mol Ther 19:928–935. http://dx.doi.org/10.1038/mt.2011.21.
  • Deng H, Jiang Q, Yang Y, Zhang S, Ma Y, Xie G, Chen X, Qian Z, Wen Y, Li J, Yang J, Chen L, Zhao X, Wei Y. 2011. Intravenous liposomal delivery of the short hairpin RNAs against Plk1 controls the growth of established human hepatocellular carcinoma. Cancer Biol Ther 11:401–409. http://dx.doi.org/10.4161/cbt.11.4.14178.
  • McCarroll JA, Dwarte T, Baigude H, Dang J, Yang L, Erlich RB, Kimpton K, Teo J, Sagnella SM, Akerfeldt MC, Liu J, Phillips PA, Rana TM, Kavallaris M. 2015. Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer. Oncotarget 6:12020–12034. http://dx.doi.org/10.18632/oncotarget.2664.
  • Gerster K, Shi W, Ng B, Yue S, Ito E, Waldron J, Gilbert R, Liu FF. 2010. Targeting polo-like kinase 1 enhances radiation efficacy for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 77:253–260. http://dx.doi.org/10.1016/j.ijrobp.2009.11.027.
  • Rödel F, Keppner S, Capalbo G, Bashary R, Kaufmann M, Rödel C, Strebhardt K, Spänkuch B. 2010. Polo-like kinase 1 as predictive marker and therapeutic target for radiotherapy in rectal cancer. Am J Pathol 177:918–929. http://dx.doi.org/10.2353/ajpath.2010.100040.
  • Spänkuch B, Heim S, Kurunci-Csacsko E, Lindenau C, Yuan J, Kaufmann M, Strebhardt K. 2006. Down-regulation of Polo-like kinase 1 elevates drug sensitivity of breast cancer cells in vitro and in vivo. Cancer Res 66:5836–5846. http://dx.doi.org/10.1158/0008-5472.CAN-06-0343.
  • Spänkuch B, Kurunci-Csacsko E, Kaufmann M, Strebhardt K. 2007. Rational combinations of siRNAs targeting Plk1 with breast cancer drugs. Oncogene 26:5793–5807. http://dx.doi.org/10.1038/sj.onc.1210355.
  • Yu C, Zhang X, Sun G, Guo X, Li H, You Y, Jacobs JL, Gardner K, Yuan D, Xu Z, Du Q, Dai C, Qian Z, Jiang K, Zhu Y, Li QQ, Miao Y. 2008. RNA interference-mediated silencing of the polo-like kinase 1 gene enhances chemosensitivity to gemcitabine in pancreatic adenocarcinoma cells. J Cell Mol Med 12:2334–2349. http://dx.doi.org/10.1111/j.1582-4934.2008.00257.x.
  • Jimeno A, Rubio-Viqueira B, Rajeshkumar NV, Chan A, Solomon A, Hidalgo M. 2010. A fine-needle aspirate-based vulnerability assay identifies polo-like kinase 1 as a mediator of gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 9:311–318. http://dx.doi.org/10.1158/1535-7163.MCT-09-0693.
  • Liu XS, Song B, Elzey BD, Ratliff TL, Konieczny SF, Cheng L, Ahmad N, Liu X. 2011. Polo-like kinase 1 facilitates loss of Pten tumor suppressor-induced prostate cancer formation. J Biol Chem 286:35795–35800. http://dx.doi.org/10.1074/jbc.C111.269050.
  • Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. 2015. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem 290:2024–2033. http://dx.doi.org/10.1074/jbc.M114.596817.
  • Li J, Karki A, Hodges KB, Ahmad N, Zoubeidi A, Strebhardt K, Ratliff TL, Konieczny SF, Liu X. 2015. Cotargeting Polo-like kinase 1 and the Wnt/β-catenin signaling pathway in castration-resistant prostate cancer. Mol Cell Biol 35:4185–4198. http://dx.doi.org/10.1128/MCB.00825-15.
  • Kim JS, Kim EJ, Oh JS, Park IC, Hwang SG. 2013. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1. Cancer Res 73:6667–6678. http://dx.doi.org/10.1158/0008-5472.CAN-13-0888.
  • Khanna A, Rane JK, Kivinummi KK, Urbanucci A, Helenius MA, Tolonen TT, Saramäki OR, Latonen L, Manni V, Pimanda JE, Maitland NJ, Westermarck J, Visakorpi T. 2015. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget 6:19661–19670. http://dx.doi.org/10.18632/oncotarget.3875.
  • Zhang W, Yang J, Liu Y, Chen X, Yu T, Jia J, Liu C. 2009. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem 284:22649–22656. http://dx.doi.org/10.1074/jbc.M109.013698.
  • Cristóbal I, González-Alonso P, Daoud L, Solano E, Torrejón B, Manso R, Madoz-Gúrpide J, Rojo F, García-Foncillas J. 2015. Activation of the tumor suppressor PP2A emerges as a potential therapeutic strategy for treating prostate cancer. Mar Drugs 13:3276–3286. http://dx.doi.org/10.3390/md13063276.
  • Rincón R, Cristóbal I, Zazo S, Arpí O, Menéndez S, Manso R, Lluch A, Eroles P, Rovira A, Albanell J, García-Foncillas J, Madoz-Gúrpide J, Rojo F. 2015. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget 6:4299–4314. http://dx.doi.org/10.18632/oncotarget.3012.
  • Wyatt AW, Gleave ME. 2015. Targeting the adaptive molecular landscape of castration-resistant prostate cancer. EMBO Mol Med 7:878–894. http://dx.doi.org/10.15252/emmm.201303701.
  • Huang J, Jia J, Tong Q, Liu J, Qiu J, Sun R, Yao L, Yang C. 2015. Knockdown of cancerous inhibitor of protein phosphatase 2A may sensitize metastatic castration-resistant prostate cancer cells to cabazitaxel chemotherapy. Tumour Biol 36:1589–1594. http://dx.doi.org/10.1007/s13277-014-2748-5.
  • Feng B, Wang R, Chen LB. 2012. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 317:184–191. http://dx.doi.org/10.1016/j.canlet.2011.11.024.
  • Nakouzi NA, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, Vielh P, Fizazi K, Chauchereau A. 2014. Targeting CDC25C, PLK1 and CHEK1 to overcome docetaxel resistance induced by loss of LZTS1 in prostate cancer. Oncotarget 5:667–678. http://dx.doi.org/10.18632/oncotarget.1574.
  • Shang ZF, Yu L, Li B, Tu WZ, Wang Y, Liu XD, Guan H, Huang B, Rang WQ, Zhou PK. 2012. 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11:3463–3471. http://dx.doi.org/10.4161/cc.21770.
  • Hou X, Li Z, Huang W, Li J, Staiger C, Kuang S, Ratliff T, Liu X. 2013. Plk1-dependent microtubule dynamics promotes androgen receptor signaling in prostate cancer. Prostate 73:1352–1363. http://dx.doi.org/10.1002/pros.22683.
  • Zhang Z, Hou X, Shao C, Li J, Cheng JX, Kuang S, Ahmad N, Ratliff T, Liu X. 2014. Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer. Cancer Res 74:6635–6647. http://dx.doi.org/10.1158/0008-5472.CAN-14-1916.
  • Zhang Z, Chen L, Wang H, Ahmad N, Liu X. 2015. Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer. Cell Cycle 14:2142–2148. http://dx.doi.org/10.1080/15384101.2015.1041689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.