66
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of the C-Raf N Region Promotes Raf Dimerization

, , , &
Article: e00132-17 | Received 24 Mar 2017, Accepted 28 Jun 2017, Published online: 17 Mar 2023

REFERENCES

  • Bryant KL, Mancias JD, Kimmelman AC, Der CJ. 2014. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100. https://doi.org/10.1016/j.tibs.2013.12.004.
  • Fernandez-Medarde A, Santos E. 2011. Ras in cancer and developmental diseases. Genes Cancer 2:344–358. https://doi.org/10.1177/1947601911411084.
  • McCormick F. 2015. KRAS as a therapeutic target. Clin Cancer Res 21:1797–1801. https://doi.org/10.1158/1078-0432.CCR-14-2662.
  • Samatar AA, Poulikakos PI. 2014. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942. https://doi.org/10.1038/nrd4281.
  • Downward J. 2003. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22. https://doi.org/10.1038/nrc969.
  • Baines AT, Xu D, Der CJ. 2011. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 3:1787–1808. https://doi.org/10.4155/fmc.11.121.
  • Mattingly RR. 2013. Activated Ras as a therapeutic target: constraints on directly targeting Ras isoforms and wild-type versus mutated proteins. ISRN Oncol 2013:536529. https://doi.org/10.1155/2013/536529.
  • Downward J. 2014. RAS's cloak of invincibility slips at last? Cancer Cell 25:5–6. https://doi.org/10.1016/j.ccr.2013.12.016.
  • Stephen AG, Esposito D, Bagni RK, McCormick F. 2014. Dragging ras back in the ring. Cancer Cell 25:272–281. https://doi.org/10.1016/j.ccr.2014.02.017.
  • McCormick F. 2011. Cancer therapy based on oncogene addiction. J Surg Oncol 103:464–467. https://doi.org/10.1002/jso.21749.
  • Sharma SV, Settleman J. 2007. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 21:3214–3231. https://doi.org/10.1101/gad.1609907.
  • Weinstein IB, Joe AK. 2006. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457. https://doi.org/10.1038/ncponc0558.
  • Wellbrock C, Karasarides M, Marais R. 2004. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885. https://doi.org/10.1038/nrm1498.
  • Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. 2007. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773:1196–1212. https://doi.org/10.1016/j.bbamcr.2007.05.001.
  • Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, Marayati R, Kher S, George SD, Xu M, Wang-Gillam A, Samatar AA, Maitra A, Wennerberg K, Petricoin EF, III, Yin HH, Nelkin B, Cox AD, Yeh JJ, Der CJ. 2016. Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell 29:75–89. https://doi.org/10.1016/j.ccell.2015.11.011.
  • Yoon S, Seger R. 2006. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44. https://doi.org/10.1080/02699050500284218.
  • Lavoie H, Therrien M. 2015. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298. https://doi.org/10.1038/nrm3979.
  • Weber CK, Slupsky JR, Kalmes HA, Rapp UR. 2001. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61:3595–3598.
  • Rushworth LK, Hindley AD, O'Neill E, Kolch W. 2006. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26:2262–2272. https://doi.org/10.1128/MCB.26.6.2262-2272.2006.
  • Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. 2009. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545. https://doi.org/10.1038/nature08314.
  • Zhang BH, Guan KL. 2000. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19:5429–5439. https://doi.org/10.1093/emboj/19.20.5429.
  • Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJ, Kornev AP, Taylor SS, Shaw AS. 2013. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036–1046. https://doi.org/10.1016/j.cell.2013.07.046.
  • Lavoie H, Li JJ, Thevakumaran N, Therrien M, Sicheri F. 2014. Dimerization-induced allostery in protein kinase regulation. Trends Biochem Sci 39:475–486. https://doi.org/10.1016/j.tibs.2014.08.004.
  • Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A, Guiral S, Duchaine J, Mao DY, Bouvier M, Sicheri F, Therrien M. 2013. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat Chem Biol 9:428–436. https://doi.org/10.1038/nchembio.1257.
  • Thevakumaran N, Lavoie H, Critton DA, Tebben A, Marinier A, Sicheri F, Therrien M. 2015. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat Struct Mol Biol 22:37–43. https://doi.org/10.1038/nsmb.2924.
  • Shaw AS, Kornev AP, Hu J, Ahuja LG, Taylor SS. 2014. Kinases and pseudokinases: lessons from RAF. Mol Cell Biol 34:1538–1546. https://doi.org/10.1128/MCB.00057-14.
  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, et al.. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–954. https://doi.org/10.1038/nature00766.
  • Poulikakos PI, Persaud Y, Janakanian M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabey MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390. https://doi.org/10.1038/nature10662.
  • Roring M, Herr R, Fiala GJ, Heilmann K, Braun S, Eisenhardt AE, Halbach S, Capper D, von Deimling A, Schamel WW, Saunders DN, Brummer T. 2012. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J 31:2629–2647. https://doi.org/10.1038/emboj.2012.100.
  • Freeman AK, Ritt DA, Morrison DK. 2013. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 49:751–758. https://doi.org/10.1016/j.molcel.2012.12.018.
  • Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI, Rosen N. 2015. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28:370–383. https://doi.org/10.1016/j.ccell.2015.08.001.
  • Brummer T, Shaw PE, Reth M, Misawa Y. 2002. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO J 21:5611–5622. https://doi.org/10.1093/emboj/cdf588.
  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R. 2005. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20:963–969. https://doi.org/10.1016/j.molcel.2005.10.022.
  • Morrison DK, Heidecker G, Rapp UR, Copeland TD. 1993. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 268:17309–17316.
  • Diaz B, Barnard D, Filson A, MacDonald S, King A, Marshall M. 1997. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol 17:4509–4516. https://doi.org/10.1128/MCB.17.8.4509.
  • Marais R, Light Y, Paterson HF, Marshall CJ. 1995. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145.
  • Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. 1999. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18:2137–2148. https://doi.org/10.1093/emboj/18.8.2137.
  • Fabian JR, Daar IO, Morrison DK. 1993. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13:7170–7179. https://doi.org/10.1128/MCB.13.11.7170.
  • King AJ, Wireman RS, Hamilton M, Marshall MS. 2001. Phosphorylation site specificity of the Pak-mediated regulation of Raf-1 and cooperativity with Src. FEBS Lett 497:6–14. https://doi.org/10.1016/S0014-5793(01)02425-5.
  • Barnard D, Diaz B, Clawson D, Marshall M. 1998. Oncogenes, growth factors and phorbol esters regulate Raf-1 through common mechanisms. Oncogene 17:1539–1547. https://doi.org/10.1038/sj.onc.1202061.
  • Williams NG, Roberts TM, Li P. 1992. Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the Raf-1 kinase. Proc Natl Acad Sci U S A 89:2922–2926. https://doi.org/10.1073/pnas.89.7.2922.
  • Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467. https://doi.org/10.1126/science.7811320.
  • Stokoe D, McCormick F. 1997. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J 16:2384–2396. https://doi.org/10.1093/emboj/16.9.2384.
  • Emuss V, Garnett M, Mason C, Marais R. 2005. Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65:9719–9726. https://doi.org/10.1158/0008-5472.CAN-05-1683.
  • Tran NH, Wu X, Frost JA. 2005. B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 280:16244–16253. https://doi.org/10.1074/jbc.M501185200.
  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ. 1997. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272:4378–4383. https://doi.org/10.1074/jbc.272.7.4378.
  • Carey KD, Watson RT, Pessin JE, Stork PJ. 2003. The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J Biol Chem 278:3185–3196. https://doi.org/10.1074/jbc.M207014200.
  • Hamidi H, Lu M, Chau K, Anderson L, Fejzo M, Ginther C, Linnartz R, Zubel A, Slamon DJ, Finn RS. 2014. KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition. Br J Cancer 111:1788–1801. https://doi.org/10.1038/bjc.2014.475.
  • Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ. 2010. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39:425–435. https://doi.org/10.1097/MPA.0b013e3181c15963.
  • Fabian JR, Vojtek AB, Cooper JA, Morrison DK. 1994. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc Natl Acad Sci U S A 91:5982–5986. https://doi.org/10.1073/pnas.91.13.5982.
  • Li Y, Takahashi M, Stork PJ. 2013. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem 288:27646–27657. https://doi.org/10.1074/jbc.M113.463067.
  • Lindauer M, Hochhaus A. 2014. Dasatinib. Recent Results Cancer Res 201:27–65. https://doi.org/10.1007/978-3-642-54490-3_2.
  • Montero JC, Seoane S, Ocana A, Pandiella A. 2011. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 17:5546–5552. https://doi.org/10.1158/1078-0432.CCR-10-2616.
  • Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM. 2004. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661. https://doi.org/10.1021/jm049486a.
  • Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR. 2009. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 27:77–83. https://doi.org/10.1038/nbt.1513.
  • Duong HQ, Yi YW, Kang HJ, Bae I, Jang YJ, Kwak SJ, Seong YS. 2014. Combination of dasatinib and gemcitabine reduces the ALDH1A1 expression and the proliferation of gemcitabine-resistant pancreatic cancer MIA PaCa-2 cells. Int J Oncol 44:2132–2138. https://doi.org/10.3892/ijo.2014.2357.
  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP. 2008. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132. https://doi.org/10.1038/nbt1358.
  • Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. 1996. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 271:695–701. https://doi.org/10.1074/jbc.271.2.695.
  • Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK. 2007. CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 17:179–184. https://doi.org/10.1016/j.cub.2006.11.061.
  • Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM, Liphardt JT, McCormick F, Gray JW, Chu S. 2013. Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci U S A 110:18519–18524. https://doi.org/10.1073/pnas.1318188110.
  • Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S. 2015. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci U S A 112:7996–8001. https://doi.org/10.1073/pnas.1509123112.
  • Dementiev A. 2012. K-Ras4B lipoprotein synthesis: biochemical characterization, functional properties, and dimer formation. Protein Expr Purif 84:86–93. https://doi.org/10.1016/j.pep.2012.04.021.
  • Guldenhaupt J, Rudack T, Bachler P, Mann D, Triola G, Waldmann H, Kotting C, Gerwert K. 2012. N-Ras forms dimers at POPC membranes. Biophys J 103:1585–1593. https://doi.org/10.1016/j.bpj.2012.08.043.
  • Lin WC, Iversen L, Tu HL, Rhodes C, Christensen SM, Iwig JS, Hansen SD, Huang WY, Groves JT. 2014. H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci U S A 111:2996–3001. https://doi.org/10.1073/pnas.1321155111.
  • Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, Gajwani P, Santana D, Gupta A, Jacobs M, Herrero-Garcia E, Cobbert J, Lavoie H, Smith M, Rajakulendran T, Dowdell E, Okur MN, Dementieva I, Sicheri F, Therrien M, Hancock JF, Ikura M, Koide S, O'Bryan JP. 2017. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 13:62–68. https://doi.org/10.1038/nchembio.2231.
  • Baljuls A, Mahr R, Schwarzenau I, Muller T, Polzien L, Hekman M, Rapp UR. 2011. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem 286:16491–16503. https://doi.org/10.1074/jbc.M110.194167.
  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. 2004. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867. https://doi.org/10.1016/S0092-8674(04)00215-6.
  • Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. 2016. Phosphorylation of RAF kinase dimers drives conformational changes that facilitate transactivation. Angew Chem 55:983–986. https://doi.org/10.1002/anie.201509272.
  • Jambrina PG, Bohuszewicz O, Buchete NV, Kolch W, Rosta E. 2014. Molecular mechanisms of asymmetric RAF dimer activation. Biochem Soc Trans 42:784–790. https://doi.org/10.1042/BST20140025.
  • Thompson PA, Ledbetter JA, Rapp UR, Bolen JB. 1991. The Raf-1 serine-threonine kinase is a substrate for the p56lck protein tyrosine kinase in human T-cells. Cell Growth Differ 2:609–617.
  • Ishizawar R, Parsons SJ. 2004. c-Src and cooperating partners in human cancer. Cancer Cell 6:209–214. https://doi.org/10.1016/j.ccr.2004.09.001.
  • Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H, Buchler MW, Adler G. 1998. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243:503–508. https://doi.org/10.1006/bbrc.1997.8043.
  • Cleghon V, Morrison DK. 1994. Raf-1 interacts with Fyn and Src in a non-phosphotyrosine-dependent manner. J Biol Chem 269:17749–17755.
  • Formisano L, D'Amato V, Servetto A, Brillante S, Raimondo L, Di Mauro C, Marciano R, Orsini RC, Cosconati S, Randazzo A, Parsons SJ, Montuori N, Veneziani BM, De Placido S, Rosa R, Bianco R. 2015. Src inhibitors act through different mechanisms in non-small cell lung cancer models depending on EGFR and RAS mutational status. Oncotarget 6:26090–26103. https://doi.org/10.18632/oncotarget.4636.
  • Shields DJ, Murphy EA, Desgrosellier JS, Mielgo A, Lau SK, Barnes LA, Lesperance J, Huang M, Schmedt C, Tarin D, Lowy AM, Cheresh DA. 2011. Oncogenic Ras/Src cooperativity in pancreatic neoplasia. Oncogene 30:2123–2134. https://doi.org/10.1038/onc.2010.589.
  • Nagaraj NS, Smith JJ, Revetta F, Washington MK, Merchant NB. 2010. Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol Cancer Ther 9:2322–2332. https://doi.org/10.1158/1535-7163.MCT-09-1212.
  • Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D, Doyle B, McKay C, Heung MY, Oien KA, Frame MC, Evans TR, Sansom OJ, Brunton VG. 2010. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139:292–303. https://doi.org/10.1053/j.gastro.2010.03.034.
  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. 2004. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10:2307–2318. https://doi.org/10.1158/1078-0432.CCR-1183-3.
  • Poulikakos PI, Rosen N. 2011. Mutant BRAF melanomas—dependence and resistance. Cancer Cell 19:11–15. https://doi.org/10.1016/j.ccr.2011.01.008.
  • Li Y, Dillon TJ, Takahashi M, Earley KT, Stork PJ. 2016. Protein kinase A-independent Ras protein activation cooperates with Rap1 protein to mediate activation of the extracellular signal-regulated kinases (ERK) by cAMP. J Biol Chem 291:21584–21595. https://doi.org/10.1074/jbc.M116.730978.
  • Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang Z, Stork PJ. 2013. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem 288:27712–27723. https://doi.org/10.1074/jbc.M113.466904.
  • Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJS. 2006. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26:2130–2145. https://doi.org/10.1128/MCB.26.6.2130-2145.2006.
  • Liu C, Takahashi M, Li Y, Dillon TJ, Kaech S, Stork PJ. 2010. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol Cell Biol 30:3956–3969. https://doi.org/10.1128/MCB.00242-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.