22
Views
43
CrossRef citations to date
0
Altmetric
Article

Na+/H+ Exchanger 1 Directly Binds to Calcineurin A and Activates Downstream NFAT Signaling, Leading to Cardiomyocyte Hypertrophy

, &
Pages 3265-3280 | Received 31 Jan 2012, Accepted 05 Jun 2012, Published online: 20 Mar 2023

REFERENCES

  • Ammar YB, Takeda S, Hisamitsu T, Mori H, Wakabayashi S. 2006. Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation. EMBO J. 25:2315–2325.
  • Aramburu J, et al. 1998. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1:627–637.
  • Bertrand B, Wakabayashi S, Ikeda T, Pouyssegur J, Shigekawa M. 1994. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem. 269:13703–13709.
  • Buch MH, et al. 2005. The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J. Biol. Chem. 280:29479–29487.
  • Bullis BL, Li X, Singh DN, Berthiaume LG, Fliegel L. 2002. Properties of the Na+/H+ exchanger protein. Detergent-resistant aggregation and membrane microdistribution. Eur. J. Biochem. 269:4887–4895.
  • Cardone RA, Casavola V, Reshkin SJ. 2005. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 5:786–795.
  • Crabtree GR. 2001. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276:2313–2316.
  • Crouch TH, Klee CB. 1980. Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry 19:3692–3698.
  • Czirjak G, Enyedi P. 2006. Targeting of calcineurin to an NFAT-like docking site is required for the calcium-dependent activation of the background K+ channel, TRESK. J. Biol. Chem. 281:14677–14682.
  • Darmellah A, et al. 2007. Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto-Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344.
  • Eder P, Molkentin JD. 2011. TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 108:265–272.
  • Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ. 2002. Inhibition of Na+-H+ exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ. Res. 90:814–819.
  • Gifford JL, Walsh MP, Vogel HJ. 2007. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 405:199–221.
  • Heath VL, Shaw SL, Roy S, Cyert MS. 2004. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryot. Cell 3:695–704.
  • Heineke J, Molkentin JD. 2006. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7:589–600.
  • Heineke J, Ritter O. 2012. Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond. J. Mol. Cell. Cardiol. 52:62–73.
  • Hisamitsu T, Ben Ammar Y, Nakamura TY, Wakabayashi S. 2006. Dimerization is crucial for the function of the Na+/H+ exchanger NHE1. Biochemistry 45:13346–13355.
  • Hisamitsu T, Pang T, Shigekawa M, Wakabayashi S. 2004. Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation. Biochemistry 43:11135–11143.
  • Hogan PG, Chen L, Nardone J, Rao A. 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17:2205–2232.
  • Ikeda T, Schmitt B, Pouyssegur J, Wakabayashi S, Shigekawa M. 1997. Identification of cytoplasmic subdomains that control pH-sensing of the Na+/H+ exchanger (NHE1): pH-maintenance, ATP-sensitive, and flexible loop domains. J. Biochem. 121:295–303.
  • Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. 1999. The myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ. Res. 85:777–786.
  • Karmazyn M, Kilic A, Javadov S. 2008. The role of NHE-1 in myocardial hypertrophy and remodelling. J. Mol. Cell. Cardiol. 44:647–653.
  • Karmazyn M, Sawyer M, Fliegel L. 2005. The Na+/H+ exchanger: a target for cardiac therapeutic intervention. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5:323–335.
  • Kilic A, et al. 2005. Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317.
  • Kincaid RL, Vaughan M. 1986. Direct comparison of Ca2+ requirements for calmodulin interaction with and activation of protein phosphatase. Proc. Natl. Acad. Sci. U. S. A. 83:1193–1197.
  • Klee CB, Draetta GF, Hubbard MJ. 1988. Calcineurin. Adv. Enzymol. Relat. Areas Mol. Biol. 61:149–200.
  • Klee CB, Ren H, Wang X. 1998. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273:13367–13370.
  • L'Allemain G, Paris S, Pouyssegur J. 1984. Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport. J. Biol. Chem. 259:5809–5815.
  • Lehoux S, Abe J, Florian JA, Berk BC. 2001. 14-3-3 binding to Na+/H+ exchanger isoform-1 is associated with serum-dependent activation of Na+/H+ exchange. J. Biol. Chem. 276:15794–15800.
  • Li H, Zhang L, Rao A, Harrison SC, Hogan PG. 2007. Structure of calcineurin in complex with PVIVIT peptide: portrait of a low-affinity signalling interaction. J. Mol. Biol. 369:1296–1306.
  • Lin X, Barber DL. 1996. A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc. Natl. Acad. Sci. U. S. A. 93:12631–12636.
  • Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50.
  • Mancini M, Toker A. 2009. NFAT proteins: emerging roles in cancer progression. Nat. Rev. Cancer 9:810–820.
  • Matsushita M, et al. 2007. Loss of calcineurin homologous protein-1 in chicken B lymphoma DT40 cells destabilizes Na+/H+ exchanger isoform-1 protein. Am. J. Physiol. Cell Physiol. 293:C246–C254. https://doi.org/10.1152/ajpcell.00464.2006.
  • Molkentin JD, et al. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228.
  • Moncoq K, Kemp G, Li X, Fliegel L, Young HS. 2008. Dimeric structure of human Na+/H+ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J. Biol. Chem. 283:4145–4154.
  • Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. 2008. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ. Res. 103:891–899.
  • Orlowski J, Grinstein S. 2004. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 447:549–565.
  • Pallen CJ, Wang JH. 1983. Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J. Biol. Chem. 258:8550–8553.
  • Pouyssegur J, Sardet C, Franchi A, L'Allemain G, Paris S. 1984. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc. Natl. Acad. Sci. U. S. A. 81:4833–4837.
  • Roy J, Li H, Hogan PG, Cyert MS. 2007. A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol. Cell 25:889–901.
  • Rusnak F, Mertz P. 2000. Calcineurin: form and function. Physiol. Rev. 80:1483–1521.
  • Sardet C, Franchi A, Pouyssegur J. 1989. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280.
  • Slepkov ER, Rainey JK, Sykes BD, Fliegel L. 2007. Structural and functional analysis of the Na+/H+ exchanger. Biochem. J. 401:623–633.
  • Tandan S, et al. 2009. Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ. Res. 105:51–60.
  • Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M. 1994. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J. Biol. Chem. 269:13710–13715.
  • Wakabayashi S, Fafournoux P, Sardet C, Pouyssegur J. 1992. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H+-sensing.” Proc. Natl. Acad. Sci. U. S. A. 89:2424–2428.
  • Wakabayashi S, Nakamura TY, Kobayashi S, Hisamitsu T. 2010. Novel phorbol ester-binding motif mediates hormonal activation of Na+/H+ exchanger. J. Biol. Chem. 285:26652–26661.
  • Wakabayashi S, Pang T, Su X, Shigekawa M. 2000. A novel topology model of the human Na+/H+ exchanger isoform 1. J. Biol. Chem. 275:7942–7949.
  • Wakabayashi S, Shigekawa M, Pouyssegur J. 1997. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol. Rev. 77:51–74.
  • Willoughby D, Masada N, Crossthwaite AJ, Ciruela A, Cooper DM. 2005. Localized Na+/H+ exchanger 1 expression protects Ca2+-regulated adenylyl cyclases from changes in intracellular pH. J. Biol. Chem. 280:30864–30872.
  • Xiang B, et al. 2003. The catalytically active domain in the A subunit of calcineurin. Biol. Chem. 384:1429–1434.
  • Xue J, et al. 2010. Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol. Genomics 42:374–383.
  • Yakel JL. 1997. Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol. Sci. 18:124–134.
  • Yi YH, et al. 2009. Membrane targeting and coupling of NHE1-integrinalphaIIbbeta3-NCX1 by lipid rafts following integrin-ligand interactions trigger Ca2+ oscillations. J. Biol. Chem. 284:3855–3864.
  • Zachos NC, Tse M, Donowitz M. 2005. Molecular physiology of intestinal Na+/H+ exchange. Annu. Rev. Physiol. 67:411–443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.