54
Views
11
CrossRef citations to date
0
Altmetric
Research Article

The Role of Metabolic Flexibility in the Regulation of the DNA Damage Response by Nitric Oxide

, , , , , , & show all
Article: e00153-19 | Received 07 Apr 2019, Accepted 18 Jun 2019, Published online: 03 Mar 2023

REFERENCES

  • Mandrup-Poulsen T, Bendtzen K, Nerup J, Dinarello CA, Svenson M, Nielsen JH. 1986. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans. Diabetologia 29:63–67. https://doi.org/10.1007/BF02427283.
  • Mandrup-Poulsen T, Bendtzen K, Nielsen JH, Bendixen G, Nerup J. 1985. Cytokines cause functional and structural damage to isolated islets of Langerhans. Allergy 40:424–429. https://doi.org/10.1111/j.1398-9995.1985.tb02681.x.
  • Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. 2013. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35. https://doi.org/10.1111/j.1749-6632.2012.06826.x.
  • Southern C, Schulster D, Green IC. 1990. Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 276:42–44. https://doi.org/10.1016/0014-5793(90)80502-A.
  • Corbett JA, Lancaster JR, Jr, Sweetland MA, McDaniel ML. 1991. Interleukin-1 beta-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans. Role of nitric oxide in interleukin-1 beta-induced inhibition of insulin secretion. J Biol Chem 266:21351–21354.
  • Welsh N, Eizirik DL, Bendtzen K, Sandler S. 1991. Interleukin-1 beta-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129:3167–3173. https://doi.org/10.1210/endo-129-6-3167.
  • Corbett JA, Wang JL, Hughes JH, Wolf BA, Sweetland MA, Lancaster JR, Jr, McDaniel ML. 1992. Nitric oxide and cyclic GMP formation induced by interleukin 1 beta in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem J 287(Part 1):229–235. https://doi.org/10.1042/bj2870229.
  • Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M. 2001. Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 98:10845–10850. https://doi.org/10.1073/pnas.191207498.
  • Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL. 2005. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461. https://doi.org/10.2337/diabetes.54.2.452.
  • Chambers KT, Unverferth JA, Weber SM, Wek RC, Urano F, Corbett JA. 2008. The role of nitric oxide and the unfolded protein response in cytokine-induced beta-cell death. Diabetes 57:124–132. https://doi.org/10.2337/db07-0944.
  • Hughes JH, Colca JR, Easom RA, Turk J, McDaniel ML. 1990. Interleukin 1 inhibits insulin secretion from isolated rat pancreatic islets by a process that requires gene transcription and mRNA translation. J Clin Invest 86:856–863. https://doi.org/10.1172/JCI114785.
  • Hughes KJ, Chambers KT, Meares GP, Corbett JA. 2009. Nitric oxides mediates a shift from early necrosis to late apoptosis in cytokine-treated beta-cells that is associated with irreversible DNA damage. Am J Physiol Endocrinol Metab 297:E1187–E1196. https://doi.org/10.1152/ajpendo.00214.2009.
  • Delaney CA, Green MH, Lowe JE, Green IC. 1993. Endogenous nitric oxide induced by interleukin-1 beta in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 333:291–295. https://doi.org/10.1016/0014-5793(93)80673-I.
  • Fehsel K, Jalowy A, Qi S, Burkart V, Hartmann B, Kolb H. 1993. Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42:496–500. https://doi.org/10.2337/diab.42.3.496.
  • Oleson BJ, Corbett JA. 2018. Dual role of nitric oxide in regulating the response of beta cells to DNA damage. Antioxid Redox Signal 29:1432–1445. https://doi.org/10.1089/ars.2017.7351.
  • Hughes KJ, Meares GP, Chambers KT, Corbett JA. 2009. Repair of nitric oxide-damaged DNA in beta-cells requires JNK-dependent GADD45alpha expression. J Biol Chem 284:27402–27408. https://doi.org/10.1074/jbc.M109.046912.
  • Oleson BJ, Broniowska KA, Naatz A, Hogg N, Tarakanova VL, Corbett JA. 2016. Nitric oxide suppresses beta-cell apoptosis by inhibiting the DNA damage response. Mol Cell Biol 36:2067–2077. https://doi.org/10.1128/MCB.00262-16.
  • Oleson BJ, Broniowska KA, Schreiber KH, Tarakanova VL, Corbett JA. 2014. Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent gammaH2AX protein formation in pancreatic beta cells. J Biol Chem 289:11454–11464. https://doi.org/10.1074/jbc.M113.531228.
  • Roos WP, Kaina B. 2013. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248. https://doi.org/10.1016/j.canlet.2012.01.007.
  • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019.
  • Shiloh Y, Ziv Y. 2013. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14:197–210. https://doi.org/10.1038/nrm3546.
  • Oleson BJ, Naatz A, Proudfoot SC, Yeo CT, Corbett JA. 2018. Role of protein phosphatase 1 and inhibitor of protein phosphatase-1 in nitric oxide-dependent inhibition of the DNA damage response in pancreatic beta-cells. Diabetes 67:898–910. https://doi.org/10.2337/db17-1062.
  • Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB, Rutter GA. 1994. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem 269:4895–4902.
  • Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. 1999. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–985. https://doi.org/10.1126/science.283.5404.981.
  • Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. 2015. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:203–218. https://doi.org/10.1042/BJ20141384.
  • Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809.
  • Gardner PR, Costantino G, Szabo C, Salzman AL. 1997. Nitric oxide sensitivity of the aconitases. J Biol Chem 272:25071–25076. https://doi.org/10.1074/jbc.272.40.25071.
  • Brown GC. 2007. Nitric oxide and mitochondria. Front Biosci 12:1024–1033. https://doi.org/10.2741/2122.
  • Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. 2014. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354. https://doi.org/10.1016/B978-0-12-801415-8.00016-3.
  • Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M. 1997. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579. https://doi.org/10.1074/jbc.272.30.18572.
  • Erecinska M, Bryla J, Michalik M, Meglasson MD, Nelson D. 1992. Energy metabolism in islets of Langerhans. Biochim Biophys Acta 1101:273–295. https://doi.org/10.1016/0005-2728(92)90084-F.
  • Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237.
  • Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434. https://doi.org/10.1016/j.ccr.2006.04.023.
  • Bacallao R, Garfinkel A, Monke S, Zampighi G, Mandel LJ. 1994. ATP depletion: a novel method to study junctional properties in epithelial tissues. I. Rearrangement of the actin cytoskeleton. J Cell Sci 107(Part 12):3301–3313.
  • Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y. 2007. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97:539–547. https://doi.org/10.1093/toxsci/kfm052.
  • Reitzer LJ, Wice BM, Kennell D. 1979. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676.
  • Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, Chen W, Clish CB, Ayata C, Brookes PS, Mootha VK. 2010. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28:249–255. https://doi.org/10.1038/nbt.1606.
  • Clemons NJ, McColl KE, Fitzgerald RC. 2007. Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133:1198–1209. https://doi.org/10.1053/j.gastro.2007.06.061.
  • Murata M, Thanan R, Ma N, Kawanishi S. 2012. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012:623019. https://doi.org/10.1155/2012/623019.
  • Tanaka T, Kurose A, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. 2006. Nitrogen oxide-releasing aspirin induces histone H2AX phosphorylation, ATM activation and apoptosis preferentially in S-phase cells: involvement of reactive oxygen species. Cell Cycle 5:1669–1674. https://doi.org/10.4161/cc.5.15.3100.
  • Yang YC, Chou HY, Shen TL, Chang WJ, Tai PH, Li TK. 2013. Topoisomerase II-mediated DNA cleavage and mutagenesis activated by nitric oxide underlie the inflammation-associated tumorigenesis. Antioxid Redox Signal 18:1129–1140. https://doi.org/10.1089/ars.2012.4620.
  • Scarim AL, Heitmeier MR, Corbett JA. 1998. Heat shock inhibits cytokine-induced nitric oxide synthase expression by rat and human islets. Endocrinology 139:5050–5057. https://doi.org/10.1210/en.139.12.5050.
  • Corbett JA, Sweetland MA, Wang JL, Lancaster JR, Jr, McDaniel ML. 1993. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci U S A 90:1731–1735. https://doi.org/10.1073/pnas.90.5.1731.
  • Liu D, Pavlovic D, Chen MC, Flodstrom M, Sandler S, Eizirik DL. 2000. Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS−/−). Diabetes 49:1116–1122. https://doi.org/10.2337/diabetes.49.7.1116.
  • Meares G, Hughes K, Jaimes K, Salvatori A, Rhodes C, Corbett J. 2009. AMP-activated protein kinase attenuates nitric oxide induced beta-cell death. J Biol Chem 285:3191–3200. https://doi.org/10.1074/jbc.M109.047365.
  • Scarim AL, Nishimoto SY, Weber SM, Corbett JA. 2003. Role for c-Jun N-terminal kinase in beta-cell recovery from nitric oxide-mediated damage. Endocrinology 144:3415–3422. https://doi.org/10.1210/en.2002-0112.
  • Jiang L, Brackeva B, Ling Z, Kramer G, Aerts JM, Schuit F, Keymeulen B, Pipeleers D, Gorus F, Martens GA. 2013. Potential of protein phosphatase inhibitor 1 as biomarker of pancreatic beta-cell injury in vitro and in vivo. Diabetes 62:2683–2688. https://doi.org/10.2337/db12-1507.
  • Brown GC, Borutaite V. 2004. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49. https://doi.org/10.1016/j.bbabio.2004.03.016.
  • Brown GC. 2001. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57. https://doi.org/10.1016/S0005-2728(00)00238-3.
  • Brown GC, Cooper CE. 1994. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298. https://doi.org/10.1016/0014-5793(94)01290-3.
  • Knight ZA, Shokat KM. 2005. Features of selective kinase inhibitors. Chem Biol 12:621–637. https://doi.org/10.1016/j.chembiol.2005.04.011.
  • Kelly CB, Blair LA, Corbett JA, Scarim AL. 2003. Isolation of islets of Langerhans from rodent pancreas. Methods Mol Med 83:3–14. https://doi.org/10.1385/1-59259-377-1:003.
  • Meares GP, Hughes KJ, Naatz A, Papa FR, Urano F, Hansen PA, Benveniste EN, Corbett JA. 2011. IRE1-dependent activation of AMPK in response to nitric oxide. Mol Cell Biol 31:4286–4297. https://doi.org/10.1128/MCB.05668-11.
  • Hughes KJ, Meares GP, Hansen PA, Corbett JA. 2011. FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide. J Biol Chem 286:8338–8348. https://doi.org/10.1074/jbc.M110.204768.
  • Khan P, Idrees D, Moxley MA, Corbett JA, Ahmad F, von Figura G, Sly WS, Waheed A, Hassan MI. 2014. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 173:333–355. https://doi.org/10.1007/s12010-014-0850-1.
  • Broniowska KA, Diers AR, Corbett JA, Hogg N. 2013. Effect of nitric oxide on naphthoquinone toxicity in endothelial cells: role of bioenergetic dysfunction and poly(ADP-ribose) polymerase activation. Biochemistry 52:4364–4372. https://doi.org/10.1021/bi400342t.
  • Stocchi V, Cucchiarini L, Canestrari F, Piacentini MP, Fornaini G. 1987. A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. Anal Biochem 167:181–190. https://doi.org/10.1016/0003-2697(87)90150-3.
  • Perez J, Hill BG, Benavides GA, Dranka BP, Darley-Usmar VM. 2010. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochem J 428:255–267. https://doi.org/10.1042/BJ20100090.
  • Broniowska KA, Oleson BJ, McGraw J, Naatz A, Mathews CE, Corbett JA. 2015. How the location of superoxide generation influences the beta-cell response to nitric oxide. J Biol Chem 290:7952–7960. https://doi.org/10.1074/jbc.M114.627869.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.