230
Views
27
CrossRef citations to date
0
Altmetric
Article

Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway

, , &
Pages 1820-1835 | Received 31 Mar 2016, Accepted 14 Apr 2016, Published online: 17 Mar 2023

REFERENCES

  • Walde S, Kehlenbach RH. 2010. The part and the whole: functions of nucleoporins in nucleocytoplasmic transport. Trends Cell Biol 20:461–469. http://dx.doi.org/10.1016/j.tcb.2010.05.001.
  • Strambio-De-Castillia C, Niepel M, Rout MP. 2010. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11:490–501. http://dx.doi.org/10.1038/nrm29281.
  • Wente SR, Rout MP. 2010. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2:a000562. http://dx.doi.org/10.1101/cshperspect.a000562.
  • Kau TR, Way JC, Silver PA. 2004. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4:106–117. http://dx.doi.org/10.1038/nrc1274.
  • O'Brate A, Giannakakou P. 2003. The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6:313–322. http://dx.doi.org/10.1016/j.drup.2003.10.004.
  • Oeckinghaus A, Ghosh S. 2009. The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspect Biol 1:a000034. http://dx.doi.org/10.1101/cshperspect.a000034.
  • Capelson M, Hetzer MW. 2009. The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10:697–705. http://dx.doi.org/10.1038/embor.2009.147.
  • Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S, Jr, Esteller M. 2010. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315. http://dx.doi.org/10.1016/j.ccr.2010.09.007.
  • Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M, Bassaganyas L, Baumann T, Juan M, Lopez-Guerra M, Colomer D, Tubio JM, Lopez C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernandez JM, Puente DA, Freije JM, Velasco G, Gutierrez-Fernandez A, Costa D, Carrio A, Guijarro S, Enjuanes A, Hernandez L, Yague J, Nicolas P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjose S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpi JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigo R, Bayes M, Heath S, Gut M, et al.. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105. http://dx.doi.org/10.1038/nature10113.
  • Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, Alpermann T, Roller A, Kohlmann A, Haferlach T, Kern W, Schnittger S. 2014. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 28:108–117. http://dx.doi.org/10.1038/leu.2013.263.
  • Xu S, Powers MA. 2009. Nuclear pore proteins and cancer. Semin Cell Dev Biol 20:620–630. http://dx.doi.org/10.1016/j.semcdb.2009.03.003.
  • Kohler A, Hurt E. 2010. Gene regulation by nucleoporins and links to cancer. Mol Cell 38:6–15. http://dx.doi.org/10.1016/j.molcel.2010.01.040.
  • Funasaka T, Wong RW. 2011. The role of nuclear pore complex in tumor microenvironment and metastasis. Cancer Metastasis Rev 30:239–251. http://dx.doi.org/10.1007/s10555-011-9287-y.
  • Simon DN, Rout MP. 2014. Cancer and the nuclear pore complex. Adv Exp Med Biol 773:285–307. http://dx.doi.org/10.1007/978-1-4899-8032-8_13.
  • Zhou MH, Yang QM. 2014. NUP214 fusion genes in acute leukemia. Oncol Lett 8:959–962. http://dx.doi.org/10.3892/ol.2014.2263.
  • von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G. 1992. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12:1687–1697. http://dx.doi.org/10.1128/MCB.12.4.1687.
  • von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G. 1992. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol Cell Biol 12:3346–3355. http://dx.doi.org/10.1128/MCB.12.8.3346.
  • Ben Abdelali R, Roggy A, Leguay T, Cieslak A, Renneville A, Touzart A, Banos A, Randriamalala E, Caillot D, Lioure B, Devidas A, Mossafa H, Preudhomme C, Ifrah N, Dombret H, Macintyre E, Asnafi V. 2014. SET-NUP214 is a recurrent γδ lineage-specific fusion transcript associated with corticosteroid/chemotherapy resistance in adult T-ALL. Blood 123:1860–1863. http://dx.doi.org/10.1182/blood-2013-08-521518.
  • Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, Adachi S, Auvrignon A, Beverloo HB, Cayuela JM, Chilton L, Fornerod M, de Haas V, Harrison CJ, Inaba H, Kaspers GJ, Liang DC, Locatelli F, Masetti R, Perot C, Raimondi SC, Reinhardt K, Tomizawa D, von Neuhoff N, Zecca M, Zwaan CM, van den Heuvel-Eibrink MM, Hasle H. 2014. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 99:865–872. http://dx.doi.org/10.3324/haematol.2013.098517.
  • Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, Stubbs A, Cools J, Nagata K, Fornerod M, Buijs-Gladdines J, Horstmann M, van Wering ER, Soulier J, Pieters R, Meijerink JP. 2008. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111:4668–4680. http://dx.doi.org/10.1182/blood-2007-09-111872.
  • Ozbek U, Kandilci A, van Baal S, Bonten J, Boyd K, Franken P, Fodde R, Grosveld GC. 2007. SET-CAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. Am J Pathol 171:654–666. http://dx.doi.org/10.2353/ajpath.2007.060934.
  • Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K. 2008. Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Iβ-CAN/Nup214. J Cell Physiol 214:322–333. http://dx.doi.org/10.1002/jcp.21199.
  • Kandilci A, Mientjes E, Grosveld G. 2004. Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937. Leukemia 18:337–340. http://dx.doi.org/10.1038/sj.leu.2403227.
  • Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A. 2008. Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 47:276–287. http://dx.doi.org/10.1002/gcc.20531.
  • Sanden C, Ageberg M, Petersson J, Lennartsson A, Gullberg U. 2013. Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer 13:440. http://dx.doi.org/10.1186/1471-2407-13-440.
  • Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M. 2010. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 24:1910–1919. http://dx.doi.org/10.1038/leu.2010.180.
  • Moroianu J, Hijikata M, Blobel G, Radu A. 1995. Mammalian karyopherin α1β and α2β heterodimers: α1 or α2 subunit binds nuclear localization signal and β subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci U S A 92:6532–6536. http://dx.doi.org/10.1073/pnas.92.14.6532.
  • Boer J, Bonten-Surtel J, Grosveld G. 1998. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol 18:1236–1247. http://dx.doi.org/10.1128/MCB.18.3.1236.
  • Kuersten S, Arts GJ, Walther TC, Englmeier L, Mattaj IW. 2002. Steady-state nuclear localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex interaction domains. Mol Cell Biol 22:5708–5720. http://dx.doi.org/10.1128/MCB.22.16.5708-5720.2002.
  • Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16:807–816. http://dx.doi.org/10.1093/emboj/16.4.807.
  • Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E. 1999. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18:2593–2609. http://dx.doi.org/10.1093/emboj/18.9.2593.
  • Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E. 2000. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA (New York, NY) 6:136–158. http://dx.doi.org/10.1017/S1355838200991994.
  • Levesque L, Guzik B, Guan T, Coyle J, Black BE, Rekosh D, Hammarskjold ML, Paschal BM. 2001. RNA export mediated by Tap involves NXT1-dependent interactions with the nuclear pore complex. J Biol Chem 276:44953–44962. http://dx.doi.org/10.1074/jbc.M106558200.
  • Wiegand HL, Coburn GA, Zeng Y, Kang Y, Bogerd HP, Cullen BR. 2002. Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol 22:245–256. http://dx.doi.org/10.1128/MCB.22.1.245-256.2002.
  • Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E. 2000. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol 20:8996–9008. http://dx.doi.org/10.1128/MCB.20.23.8996-9008.2000.
  • van Deursen J, Boer J, Kasper L, Grosveld G. 1996. G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J 15:5574–5583.
  • Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M. 2006. Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60S preribosomal nuclear export. J Biol Chem 281:19378–19386. http://dx.doi.org/10.1074/jbc.M512585200.
  • Hutten S, Kehlenbach RH. 2006. Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26:6772–6785. http://dx.doi.org/10.1128/MCB.00342-06.
  • Roloff S, Spillner C, Kehlenbach RH. 2013. Several phenylalanine-glycine motives in the nucleoporin Nup214 are essential for binding of the nuclear export receptor CRM1. J Biol Chem 288:3952–3963. http://dx.doi.org/10.1074/jbc.M112.433243.
  • Xylourgidis N, Roth P, Sabri N, Tsarouhas V, Samakovlis C. 2006. The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFκB activation in Drosophila. J Cell Sci 119:4409–4419. http://dx.doi.org/10.1242/jcs.03201.
  • Takeda A, Yaseen NR. 2014. Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27:3–10. http://dx.doi.org/10.1016/j.semcancer.2014.02.009.
  • Fornerod M, Boer J, van Baal S, Morreau H, Grosveld G. 1996. Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 13:1801–1808.
  • Saito S, Miyaji-Yamaguchi M, Nagata K. 2004. Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 111:501–507. http://dx.doi.org/10.1002/ijc.20296.
  • Nagata K, Saito S, Okuwaki M, Kawase H, Furuya A, Kusano A, Hanai N, Okuda A, Kikuchi A. 1998. Cellular localization and expression of template-activating factor I in different cell types. Exp Cell Res 240:274–281. http://dx.doi.org/10.1006/excr.1997.3930.
  • Numajiri Haruki A, Naito T, Nishie T, Saito S, Nagata K. 2011. Interferon-inducible antiviral protein MxA enhances cell death triggered by endoplasmic reticulum stress. J Interferon Cytokine Res 31:847–856. http://dx.doi.org/10.1089/jir.2010.0132.
  • Herold A, Klymenko T, Izaurralde E. 2001. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA (New York, NY) 7:1768–1780.
  • Askjaer P, Bachi A, Wilm M, Bischoff FR, Weeks DL, Ogniewski V, Ohno M, Niehrs C, Kjems J, Mattaj IW, Fornerod M. 1999. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol Cell Biol 19:6276–6285. http://dx.doi.org/10.1128/MCB.19.9.6276.
  • Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. 1999. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 145:645–657. http://dx.doi.org/10.1083/jcb.145.4.645.
  • Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M. 1998. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547. http://dx.doi.org/10.1006/excr.1998.4136.
  • Daelemans D, Costes SV, Lockett S, Pavlakis GN. 2005. Kinetic and molecular analysis of nuclear export factor CRM1 association with its cargo in vivo. Mol Cell Biol 25:728–739. http://dx.doi.org/10.1128/MCB.25.2.728-739.2005.
  • Kudo N, Khochbin S, Nishi K, Kitano K, Yanagida M, Yoshida M, Horinouchi S. 1997. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J Biol Chem 272:29742–29751. http://dx.doi.org/10.1074/jbc.272.47.29742.
  • Takeda A, Sarma NJ, Abdul-Nabi AM, Yaseen NR. 2010. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. J Biol Chem 285:16248–16257. http://dx.doi.org/10.1074/jbc.M109.048785.
  • Johnson C, Van Antwerp D, Hope TJ. 1999. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J 18:6682–6693. http://dx.doi.org/10.1093/emboj/18.23.6682.
  • Rodriguez MS, Thompson J, Hay RT, Dargemont C. 1999. Nuclear retention of IκBα protects it from signal-induced degradation and inhibits nuclear factor κB transcriptional activation. J Biol Chem 274:9108–9115. http://dx.doi.org/10.1074/jbc.274.13.9108.
  • Huang TT, Kudo N, Yoshida M, Miyamoto S. 2000. A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc Natl Acad Sci U S A 97:1014–1019. http://dx.doi.org/10.1073/pnas.97.3.1014.
  • Tam WF, Lee LH, Davis L, Sen R. 2000. Cytoplasmic sequestration of Rel proteins by IκBα requires CRM1-dependent nuclear export. Mol Cell Biol 20:2269–2284. http://dx.doi.org/10.1128/MCB.20.6.2269-2284.2000.
  • Malek S, Chen Y, Huxford T, Ghosh G. 2001. IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J Biol Chem 276:45225–45235. http://dx.doi.org/10.1074/jbc.M105865200.
  • Hayden MS, Ghosh S. 2004. Signaling to NF-κB. Genes Dev 18:2195–2224. http://dx.doi.org/10.1101/gad.1228704.
  • Baeuerle PA, Baltimore D. 1988. IκB: a specific inhibitor of the NF-κB transcription factor. Science (New York, NY) 242:540–546. http://dx.doi.org/10.1126/science.3140380.
  • Kanarek N, Ben-Neriah Y. 2012. Regulation of NF-κB by ubiquitination and degradation of the IκBs. Immunol Rev 246:77–94. http://dx.doi.org/10.1111/j.1600-065X.2012.01098.x.
  • Allen NP, Huang L, Burlingame A, Rexach M. 2001. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem 276:29268–29274. http://dx.doi.org/10.1074/jbc.M102629200.
  • Terry LJ, Wente SR. 2009. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot Cell 8:1814–1827. http://dx.doi.org/10.1128/EC.00225-09.
  • Kang Y, Bogerd HP, Cullen BR. 2000. Analysis of cellular factors that mediate nuclear export of RNAs bearing the Mason-Pfizer monkey virus constitutive transport element. J Virol 74:5863–5871. http://dx.doi.org/10.1128/JVI.74.13.5863-5871.2000.
  • Oka M, Asally M, Yasuda Y, Ogawa Y, Tachibana T, Yoneda Y. 2010. The mobile FG nucleoporin Nup98 is a cofactor for Crm1-dependent protein export. Mol Biol Cell 21:1885–1896. http://dx.doi.org/10.1091/mbc.E09-12-1041.
  • Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U. 2001. RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. EMBO Rep 2:926–932. http://dx.doi.org/10.1093/embo-reports/kve200.
  • Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. 2001. Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol 153:1391–1402. http://dx.doi.org/10.1083/jcb.153.7.1391.
  • Koyama M, Shirai N, Matsuura Y. 2014. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex. Cell Rep 9:983–995. http://dx.doi.org/10.1016/j.celrep.2014.09.052.
  • Bernad R, van der Velde H, Fornerod M, Pickersgill H. 2004. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24:2373–2384. http://dx.doi.org/10.1128/MCB.24.6.2373-2384.2004.
  • Schwartz M, Travesa A, Martell SW, Forbes DJ. 2015. Analysis of the initiation of nuclear pore assembly by ectopically targeting nucleoporins to chromatin. Nucleus (Austin, Tex) 6:40–54. http://dx.doi.org/10.1080/19491034.2015.1004260.
  • Prasad S, Ravindran J, Aggarwal BB. 2010. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem 336:25–37. http://dx.doi.org/10.1007/s11010-009-0267-2.
  • Perkins ND. 2007. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8:49–62. http://dx.doi.org/10.1038/nrm2083.
  • Wang J, Jacob NK, Ladner KJ, Beg A, Perko JD, Tanner SM, Liyanarachchi S, Fishel R, Guttridge DC. 2009. RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep 10:1272–1278. http://dx.doi.org/10.1038/embor.2009.197.
  • Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW. 2011. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136. http://dx.doi.org/10.1101/gad.17276711.
  • Hsu LC, Enzler T, Seita J, Timmer AM, Lee CY, Lai TY, Yu GY, Lai LC, Temkin V, Sinzig U, Aung T, Nizet V, Weissman IL, Karin M. 2011. IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat Immunol 12:144–150. http://dx.doi.org/10.1038/ni.1976.
  • Mankan AK, Canli O, Schwitalla S, Ziegler P, Tschopp J, Korn T, Greten FR. 2011. TNF-α-dependent loss of IKKβ-deficient myeloid progenitors triggers a cytokine loop culminating in granulocytosis. Proc Natl Acad Sci U S A 108:6567–6572. http://dx.doi.org/10.1073/pnas.1018331108.
  • Stein SJ, Baldwin AS. 2013. Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 121:5015–5024. http://dx.doi.org/10.1182/blood-2013-02-486142.
  • Zhang J, Li L, Baldwin AS, Jr, Friedman AD, Paz-Priel I. 2015. Loss of IKKβ but not NF-κB p65 skews differentiation towards myeloid over erythroid commitment and increases myeloid progenitor self-renewal and functional long-term hematopoietic stem cells. PLoS One 10:e0130441. http://dx.doi.org/10.1371/journal.pone.0130441.
  • Dai Y, Rahmani M, Grant S. 2003. An intact NF-κB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle (Georgetown, Tex) 2:467–472.
  • Song MG, Ryoo IG, Choi HY, Choi BH, Kim ST, Heo TH, Lee JY, Park PH, Kwak MK. 2015. NRF2 signaling negatively regulates phorbol-12-myristate-13-acetate (PMA)-induced differentiation of human monocytic U937 cells into pro-inflammatory macrophages. PLoS One 10:e0134235. http://dx.doi.org/10.1371/journal.pone.0134235.
  • Fu SC, Huang HC, Horton P, Juan HF. 2013. ValidNESs: a database of validated leucine-rich nuclear export signals. Nucleic Acids Res 41:D338–D343. http://dx.doi.org/10.1093/nar/gks936.
  • Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH. 2013. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol Cell Proteomics 12:664–678. http://dx.doi.org/10.1074/mcp.M112.024877.
  • Okuwaki M, Sumi A, Hisaoka M, Saotome-Nakamura A, Akashi S, Nishimura Y, Nagata K. 2012. Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res 40:4861–4878. http://dx.doi.org/10.1093/nar/gks162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.