151
Views
115
CrossRef citations to date
0
Altmetric
Article

HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development

, , &
Pages 845-860 | Received 09 Feb 2010, Accepted 03 Dec 2010, Published online: 20 Mar 2023

REFERENCES

  • Acampora, D., et al. 1995. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290.
  • Agalioti, T., G. Chen, and D. Thanos. 2002. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381–392.
  • Akhtar, A., and P. B. Becker. 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5:367–375.
  • Biben, C., and R. P. Harvey. 1997. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11:1357–1369.
  • Bochman, M. L., and A. Schwacha. 2008. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 31:287–293.
  • Boncinelli, E., and R. Morgan. 2001. Downstream of Otx2, or how to get a head. Trends Genet. 17:633–636.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592–604.
  • Braunstein, M., R. E. Sobel, C. D. Allis, B. M. Turner, and J. R. Broach. 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
  • Burke, T. W., J. G. Cook, M. Asano, and J. R. Nevins. 2001. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276:15397–15408.
  • Chapman, D. L., et al. 1996. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206:379–390.
  • Contzler, R., et al. 2006. Histone acetyltransferase HBO1 inhibits NF-kappaB activity by coactivator sequestration. Biochem. Biophys. Res. Commun. 350:208–213.
  • Dessaud, E., A. P. McMahon, and J. Briscoe. 2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503.
  • Dhalluin, C., et al. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496.
  • Doyon, Y., et al. 2006. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21:51–64.
  • Dumont, D. J., et al. 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8:1897–1909.
  • Fischle, W., Y. Wang, and C. D. Allis. 2003. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15:172–183.
  • Foy, R. L., et al. 2008. Role of Jade-1 in the histone acetyltransferase (HAT) HBO1 complex. J. Biol. Chem. 283:28817–28826.
  • Georgiakaki, M., et al. 2006. Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription. Mol. Endocrinol. 20:2122–2140.
  • Gridley, T. 2006. The long and short of it: somite formation in mice. Dev. Dyn. 235:2330–2336.
  • Grienenberger, A., et al. 2002. The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr. Biol. 12:762–766.
  • Gupta, A., et al. 2008. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol. Cell. Biol. 28:397–409.
  • Hayashi, S., and A. P. McMahon. 2002. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305–318.
  • Hayashi, Y., T. Senda, N. Sano, and M. Horikoshi. 2009. Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network. Genes Cells 14:789–806.
  • Hu, Y., et al. 2009. Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev. Dyn. 238:2912–2921.
  • Huang, L. E., Z. Arany, D. M. Livingston, and H. F. Bunn. 1996. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271:32253–32259.
  • Iizuka, M., T. Matsui, H. Takisawa, and M. M. Smith. 2006. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26:1098–1108.
  • Iizuka, M., et al. 2008. Hbo1 links p53-dependent stress signaling to DNA replication licensing. Mol. Cell. Biol. 28:140–153.
  • Iizuka, M., and B. Stillman. 1999. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274:23027–23034.
  • Iizuka, M., et al. 2009. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene 436:108–114.
  • Jacobson, R. H., A. G. Ladurner, D. S. King, and R. Tjian. 2000. Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425.
  • Jenuwein, T., and C. D. Allis. 2001. Translating the histone code. Science 293:1074–1080.
  • Johmura, Y., S. Osada, M. Nishizuka, and M. Imagawa. 2008. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J. Biol. Chem. 283:2265–2274.
  • Johnsson, A., et al. 2009. HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBO Rep. 10:1009–1014.
  • Katsumoto, T., et al. 2006. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 20:1321–1330.
  • Korhonen, J., et al. 1992. Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood 80:2548–2555.
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128:693–705.
  • Kurdistani, S. K., S. Tavazoie, and M. Grunstein. 2004. Mapping global histone acetylation patterns to gene expression. Cell 117:721–733.
  • Liu, L. X., et al. 2002. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 291:908–914.
  • Liu, P., N. A. Jenkins, and N. G. Copeland. 2003. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13:476–484.
  • Loughran, S. J., et al. 2008. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9:810–819.
  • Machida, Y. J., J. L. Hamlin, and A. Dutta. 2005. Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24.
  • Miotto, B., et al. 2006. Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev. 20:101–112.
  • Miotto, B., and K. Struhl. 2010. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol. Cell 37:57–66.
  • Miotto, B., and K. Struhl. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22:2633–2638.
  • Nicosia, R. F., E. Bonanno, M. Smith, and P. Yurchenco. 1994. Modulation of angiogenesis in vitro by laminin-entactin complex. Dev. Biol. 164:197–206.
  • Nye, J. S., R. Kopan, and R. Axel. 1994. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120:2421–2430.
  • Perez-Campo, F. M., J. Borrow, V. Kouskoff, and G. Lacaud. 2009. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood 113:4866–4874.
  • Puri, M. C., J. Rossant, K. Alitalo, A. Bernstein, and J. Partanen. 1995. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14:5884–5891.
  • Roh, T. Y., S. Cuddapah, and K. Zhao. 2005. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19:542–552.
  • Rossant, J., and L. Howard. 2002. Signaling pathways in vascular development. Annu. Rev. Cell Dev. Biol. 18:541–573.
  • Saksouk, N., et al. 2009. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol. Cell 33:257–265.
  • Sasai, Y. 2001. Roles of Sox factors in neural determination: conserved signaling in evolution? Int. J. Dev. Biol. 45:321–326.
  • Sato, T. N., Y. Qin, C. A. Kozak, and K. L. Audus. 1993. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. U. S. A. 90:9355–9358.
  • Schubeler, D., et al. 2004. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18:1263–1271.
  • Schwenk, F., U. Baron, and K. Rajewsky. 1995. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23:5080–5081.
  • Shalaby, F., et al. 1995. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66.
  • Sharma, M., M. Zarnegar, X. Li, B. Lim, and Z. Sun. 2000. Androgen receptor interacts with a novel MYST protein, HBO1. J. Biol. Chem. 275:35200–35208.
  • Smith, J. 1999. T-box genes: what they do and how they do it. Trends Genet. 15:154–158.
  • Solloway, M. J., and R. P. Harvey. 2003. Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc. Res. 58:264–277.
  • Strahl, B. D., and C. D. Allis. 2000. The language of covalent histone modifications. Nature 403:41–45.
  • Taipale, M., et al. 2005. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 25:6798–6810.
  • Thomas, P. Q., A. Brown, and R. S. Beddington. 1998. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94.
  • Thomas, T., et al. 2006. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 20:1175–1186.
  • Thomas, T., M. P. Dixon, A. J. Kueh, and A. K. Voss. 2008. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol. Cell. Biol. 28:5093–5105.
  • Thomas, T., and M. Dziadek. 1993. Genes coding for basement membrane glycoproteins laminin, nidogen, and collagen IV are differentially expressed in the nervous system and by epithelial, endothelial, and mesenchymal cells of the mouse embryo. Exp. Cell Res. 208:54–67.
  • Thomas, T., K. L. Loveland, and A. K. Voss. 2007. The genes coding for the MYST family histone acetyltransferases, Tip60 and Mof, are expressed at high levels during sperm development. Gene Expr. Patterns 7:657–665.
  • Thomas, T., A. K. Voss, K. Chowdhury, and P. Gruss. 2000. Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127:2537–2548.
  • Turner, B. M. 2000. Histone acetylation and an epigenetic code. Bioessays 22:836–845.
  • Voss, A. K., C. Collin, M. P. Dixon, and T. Thomas. 2009. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev. Cell 17:674–686.
  • Voss, A. K., D. L. Krebs, and T. Thomas. 2006. C3G regulates the size of the cerebral cortex neural precursor population. EMBO J. 25:3652–3663.
  • Voss, A. K., T. Thomas, and P. Gruss. 1997. Germ line chimeras from female ES cells. Exp. Cell Res. 230:45–49.
  • Voss, A. K., T. Thomas, and P. Gruss. 2000. Mice lacking HSP90beta fail to develop a placental labyrinth. Development 127:1–11.
  • Voss, A. K., et al. 2000. Taube nuss is a novel gene essential for the survival of pluripotent cells of early mouse embryos. Development 127:5449–5461.
  • Wilkinson, D. G., S. Bhatt, and B. G. Herrmann. 1990. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343:657–659.
  • Wu, Z. Q., and X. Liu. 2008. Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc. Natl. Acad. Sci. U. S. A. 105:1919–1924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.