48
Views
24
CrossRef citations to date
0
Altmetric
Article

Poly(ADP-Ribose) Polymerase 1 Promotes Oxidative-Stress-Induced Liver Cell Death via Suppressing Farnesoid X Receptor α

, , , , , , , , , , & show all
Pages 4492-4503 | Received 06 Feb 2013, Accepted 05 Sep 2013, Published online: 20 Mar 2023

REFERENCES

  • Kassam A, Miao B, Young PR, Mukherjee R. 2003. Retinoid X receptor (RXR) agonist-induced antagonism of farnesoid X receptor (FXR) activity due to absence of coactivator recruitment and decreased DNA binding. J. Biol. Chem. 278:10028–10032.
  • Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. 2006. FXR, a multipurpose nuclear receptor. Trends Biochem. Sci. 31:572–580.
  • Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M, Cheruvallath Z, Jackson D, Casari G, Koegl M, Paabo S, Mous J, Kremoser C, Deuschle U. 2003. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol. Cell. Biol. 23:864–872.
  • Seol W, Choi HS, Moore DD. 1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9:72–85.
  • Zhang Y, Edwards PA. 2008. FXR signaling in metabolic disease. FEBS Lett. 582:10–18.
  • Meng Z, Wang Y, Wang L, Jin W, Liu N, Pan H, Liu L, Wagman L, Forman BM, Huang W. 2010. FXR regulates liver repair after CCl4-induced toxic injury. Mol. Endocrinol. 24:886–897.
  • Chen WD, Wang YD, Zhang L, Shiah S, Wang M, Yang F, Yu D, Forman BM, Huang W. 2010. Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology 51:953–962.
  • Zhang L, Wang YD, Chen WD, Wang X, Lou G, Liu N, Lin M, Forman BM, Huang W. 2012. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 56:2336–2343.
  • D'Amours D, Desnoyers S, D'Silva I, Poirier GG. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342(Part 2):249–268.
  • Virag L, Szabo C. 2002. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54:375–429.
  • Kim MY, Zhang T, Kraus WL. 2005. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying' NAD+ into a nuclear signal. Genes Dev. 19:1951–1967.
  • Kraus WL. 2008. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr. Opin. Cell Biol. 20:294–302.
  • Woodhouse BC, Dianov GL. 2008. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst.) 7:1077–1086.
  • Conner GE, Salathe M, Forteza R. 2002. Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care Med. 166:S57–S61.
  • Mangerich A, Burkle A. 2012. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid. Med. Cell. Longev. 2012:321653. doi:10.1155/2012/321653.
  • National Research Council Committee on the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, and Commission on Life Sciences. 1996. Guide for the care and use of laboratory animals. National Academy Press, Washington, DC.
  • Neufeld DS. 1997. Isolation of rat liver hepatocytes. Methods Mol. Biol. 75:145–151.
  • Huang D, Wang Y, Yang C, Liao Y, Huang K. 2009. Angiotensin II promotes poly(ADP-ribosyl)ation of c-Jun/c-Fos in cardiac fibroblasts. J. Mol. Cell. Cardiol. 46:25–32.
  • Huang D, Yang C, Wang Y, Liao Y, Huang K. 2009. PARP-1 suppresses adiponectin expression through poly(ADP-ribosyl)ation of PPARγ in cardiac fibroblasts. Cardiovasc. Res. 81:98–107.
  • Mathews MT, Berk BC. 2008. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol. 28:711–717.
  • Simonin F, Menissier-de Murcia J, Poch O, Muller S, Gradwohl G, Molinete M, Penning C, Keith G, de Murcia G. 1990. Expression and site-directed mutagenesis of the catalytic domain of human poly(ADP-ribose)polymerase in Escherichia coli. Lysine 893 is critical for activity. J. Biol. Chem. 265:19249–19256.
  • Schmiesing JA, Ball ARJr, Gregson HC, Alderton JM, Zhou S, Yokomori K. 1998. Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics. Proc. Natl. Acad. Sci. U. S. A. 95:12906–12911.
  • Xu W, Cho H, Evans RM. 2003. Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol. 364:205–223.
  • Gibson GE, Zhang H, Xu H, Park LC, Jeitner TM. 2002. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme. Biochim. Biophys. Acta 1586:177–189.
  • Wang YD, Yang F, Chen WD, Huang X, Lai L, Forman BM, Huang W. 2008. Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo. Mol. Endocrinol. 22:1622–1632.
  • Oumouna-Benachour K, Hans CP, Suzuki Y, Naura A, Datta R, Belmadani S, Fallon K, Woods C, Boulares AH. 2007. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-κB nuclear translocation, and foam cell death. Circulation 115:2442–2450.
  • Cavone L, Chiarugi A. 2012. Targeting poly(ADP-ribose) polymerase-1 as a promising approach for immunomodulation in multiple sclerosis? Trends Mol. Med. 18:92–100.
  • Koh SH, Park Y, Song CW, Kim JG, Kim K, Kim J, Kim MH, Lee SR, Kim DW, Yu HJ, Chang DI, Hwang SJ, Kim SH. 2004. The effect of PARP inhibitor on ischaemic cell death, its related inflammation and survival signals. Eur. J. Neurosci. 20:1461–1472.
  • Butler AJ, Ordahl CP. 1999. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol. Cell Biol. 19:296–306.
  • Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R. 2007. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol. Cell 25:297–308.
  • Modica S, Gadaleta RM, Moschetta A. 2010. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl. Recept. Signal. 8:e005. doi:10.1621/nrs.08005.
  • Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, Arias I, Setchell KD, Suchy FJ, Shneider BL. 2008. The membrane protein ATPase class I type 8B member 1 signals through protein kinase Cζ to activate the farnesoid X receptor. Hepatology 48:1896–1905.
  • Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, Chiang CM, Veenstra TD. 2009. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10:392–404.
  • Kemper JK. 2011. Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications. Biochim. Biophys. Acta 1812:842–850.
  • Hollman DA, Milona A, van Erpecum KJ, van Mil SW. 2012. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim. Biophys. Acta 1821:1443–1452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.