44
Views
23
CrossRef citations to date
0
Altmetric
Research Article

PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion

, , , , , , , , & show all
Article: e00171-17 | Received 09 Apr 2017, Accepted 15 Jun 2017, Published online: 17 Mar 2023

REFERENCES

  • Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manèek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. 2015. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066.
  • Raposo G, Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138.
  • Harding C, Heuser J, Stahl P. 1983. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339. https://doi.org/10.1083/jcb.97.2.329.
  • Pan BT, Teng K, Wu C, Adam M, Johnstone RM. 1985. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948. https://doi.org/10.1083/jcb.101.3.942.
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420.
  • Tkach M, Théry C. 2016. Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232. https://doi.org/10.1016/j.cell.2016.01.043.
  • Kucharzewska P, Belting M. 2013. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles 5:2.
  • Théry C, Zitvogel L, Amigorena S. 2002. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579.
  • Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360. https://doi.org/10.3402/jev.v2i0.20360.
  • Colombo M, Raposo G, Théry C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326.
  • Nolte-‘tHoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, Hoen PA. 2012. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40:9272–9285. https://doi.org/10.1093/nar/gks658.
  • Yuana Y, Sturk A, Nieuwland R. 2013. Extracellular vesicles in physiological and pathological conditions. Blood Rev 27:31–39. https://doi.org/10.1016/j.blre.2012.12.002.
  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar CM, Nitadori-Hoshino A. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753.
  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S. 2015. Tumor exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756.
  • Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H. 2015. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104. https://doi.org/10.1038/nature15376.
  • Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30. https://doi.org/10.1038/ncb2000.
  • Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ. 2013. Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp Cell Res 319:1706–1713. https://doi.org/10.1016/j.yexcr.2012.10.006.
  • Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Théry C. 2012. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumour microenvironment and can promote tumour progression. Cancer Res 72:4920–4930. https://doi.org/10.1158/0008-5472.CAN-12-0925.
  • Sinha S, Daisuke H, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. 2016. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214:197–213. https://doi.org/10.1083/jcb.201601025.
  • Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA. 2003. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278:10189–10194. https://doi.org/10.1074/jbc.M210837200.
  • Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. 2004. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 24:1584–1593. https://doi.org/10.1523/JNEUROSCI.5209-03.2004.
  • Shimaya A, Kovacina KS, Roth RA. 2004. On the mechanism for neomycin reversal of wortmannin inhibition of insulin stimulation of glucose uptake. J Biol Chem 279:55277–55282. https://doi.org/10.1074/jbc.M411540200.
  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. 2007. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323. https://doi.org/10.1038/ncb1547.
  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303. https://doi.org/10.1016/j.cell.2010.02.024.
  • Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. 2007. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signalling downstream of this complex. J Biol Chem 282:24514–24524. https://doi.org/10.1074/jbc.M704406200.
  • Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K. 2007. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–20339. https://doi.org/10.1074/jbc.M702636200.
  • Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jenö P, Arrieumerlou C, Hall MN. 2007. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2:e1217. https://doi.org/10.1371/journal.pone.0001217.
  • Wang L, Harris TE, Roth RA, Lawrence JC. 2007. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036–20044. https://doi.org/10.1074/jbc.M702376200.
  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. 2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915. https://doi.org/10.1016/j.molcel.2007.03.003.
  • Wang L, Harris TE, Lawrence JC. 2008. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediate phosphorylation. J Biol Chem 283:15619–15627. https://doi.org/10.1074/jbc.M800723200.
  • Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, Kraft AS. 2009. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther 8:846–853. https://doi.org/10.4161/cbt.8.9.8210.
  • Fonseca BD, Lee VH, Proud CG. 2008. The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J 411:141–149. https://doi.org/10.1042/BJ20071001.
  • Cheng CF, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B, Bright AM, Yerushalmi D, Liang M, Chen M, Han YP, Woodley DT, Li W. 2008. Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol 28:3344–3358. https://doi.org/10.1128/MCB.01287-07.
  • Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O'Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W. 2011. A fragment of secreted Hsp90alpha carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Investig 121:4348–4361. https://doi.org/10.1172/JCI46475.
  • Li W, Sahu D, Tsen F. 2012. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823:730–741. https://doi.org/10.1016/j.bbamcr.2011.09.009.
  • Li Y, Fan J, Chen M, Li W, Woodley DT. 2006. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration. J Investig Dermatol 126:2096–2105. https://doi.org/10.1038/sj.jid.5700350.
  • Li W, Li Y, Guan S, Fan J, Cheng CF, Chen M, Woodley DT. 2007. Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233. https://doi.org/10.1038/sj.emboj.7601579.
  • Woodley DT, Li Y, Fan J, Cheng JC-F, Chen M, Li W. 2009. Participation of LRP-1 in hypoxia hsp90α autocrine signaling to promote cell motility. J Cell Sci 122:1495–1498. https://doi.org/10.1242/jcs.047894.
  • Vincent EE, Elder DJE, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR, Tavaré JM. 2011. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer 104:1755–1761. https://doi.org/10.1038/bjc.2011.132.
  • Yu X, Harris SL, Levine AJ. 2006. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801. https://doi.org/10.1158/0008-5472.CAN-05-4579.
  • Zou M, Bhatia A, Dong H, Jayaprakash P, Guo J, Sahu D, Hou Y, Tsen F, Tong C, O'Brien K, Situ A, Schimidt T, Chen M, Ying Q, Ulmer T, Woodley D, Li W. 2016. Evolutionarily conserved dual lysine motif determines the non-chaperone function of secreted Hsp90alpha in tumour progression. Oncogene 36:2160–2171. https://doi.org/10.1038/onc.2016.375.
  • Sahu D, Zhao Z, Tsen F, Cheng CF, Park R, Situ AJ, Dai J, Eginli A, Shams S, Chen M, Ulmer TS. 2012. A potentially common peptide target in secreted heat shock protein-90α for hypoxia-inducible factor-1α–positive tumors. Mol Biol Cell 23:602–613. https://doi.org/10.1091/mbc.E11-06-0575.
  • Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A. 2014. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. https://doi.org/10.1016/j.ccell.2014.09.005.
  • Huang B, Porter G. 2005. Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta Pharmacol Sin 26:1253–1258. https://doi.org/10.1111/j.1745-7254.2005.00184.x.
  • Nascimento EB, Snel M, Guigas B, van der Zon GC, Kriek J, Maassen JA, Jazet IM, Diamant M, Ouwens DM. 2010. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Cell Signal 22:961–967. https://doi.org/10.1016/j.cellsig.2010.02.002.
  • Pino MS, Shrader M, Baker CH, Cognetti F, Xiong HQ, Abbruzzese JL, McConkey DJ. 2006. Transforming growth factor α expression drives constitutive epidermal growth factor receptor pathway activation and sensitivity to gefitinib (Iressa) in human pancreatic cancer cell lines. Cancer Res 66:3802–3812. https://doi.org/10.1158/0008-5472.CAN-05-3753.
  • Garcia-Maceira P, Mateo J. 2009. Silibinin inhibits hypoxia-inducible factor-1α and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene 28:313–324. https://doi.org/10.1038/onc.2008.398.
  • Jia CH, Li M, Liu J, Zhao L, Lin J, Lai PL, Zhou X, Zhang Y, Chen ZG, Li HY, Liu AL, Yang CL, Gao TM, Jiang Y, Can XC. 2013. IKK-β mediates hydrogen peroxide induced cell death through p85 S6K1. Cell Death Differ 20:248–258. https://doi.org/10.1038/cdd.2012.115.
  • Wiza C, Nascimento EB, Ouwens DM. 2012. Role of PRAS40 in Akt and mTOR signalling in health and disease. Am J Physiol Endocrinol Metab 302:E1453–E1460. https://doi.org/10.1152/ajpendo.00660.2011.
  • Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. 2016. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Nat Acad Sci USA 113:E968–E977. https://doi.org/10.1073/pnas.1521230113.
  • Madhunapantula SV, Sharma A, Robertson GP. 2007. PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res 67:3626–3636. https://doi.org/10.1158/0008-5472.CAN-06-4234.
  • Huang L, Nakai Y, Kuwahara I, Matsumoto K. 2012. PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma. Cancer Res 72:1260–1269. https://doi.org/10.1158/0008-5472.CAN-11-2254.
  • Kazi AA, Lang CH. 2010. PRAS40 regulates protein synthesis and cell cycle in C2C12 myoblasts. Mol Med 16:359. https://doi.org/10.2119/molmed.2009-00168.
  • Havel JJ, Li Z, Cheng D, Peng J, Fu H. 2015. Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene 34:1487–1498. https://doi.org/10.1038/onc.2014.91.
  • Yu F, Narasimhan P, Saito A, Liu J, Chan PH. 2008. Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab 28:44–52. https://doi.org/10.1038/sj.jcbfm.9600501.
  • Shin MJ, Kim DW, Jo HS, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Kim JA, Hwang JS, Sohn EJ. 2016. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults. Free Radic Biol Med 97:250–262. https://doi.org/10.1016/j.freeradbiomed.2016.06.009.
  • Amzallag N, Passer BJ, Allanic D, Segura E, Théry C, Goud B, Amson R, Telerman A. 2004. TSAP6 facilitates the secretion of translationally controlled tumour protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279:46104–46112. https://doi.org/10.1074/jbc.M404850200.
  • Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A. 2008. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15:1723–1733. https://doi.org/10.1038/cdd.2008.104.
  • Dong H, Zou M, Bhatia A, Jayaprakash P, Hofman F, Ying Q, Chen M, Woodley DT, Li W. 2016. Breast cancer MDA-MB-231 cells use secreted heat shock protein-90alpha (Hsp90α) to survive a hostile hypoxic environment. Sci Rep 6:20605. https://doi.org/10.1038/srep20605.
  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. 2005. Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638. https://doi.org/10.1242/jcs.02494.
  • Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, Chaturvedi P, Green JJ, Semenza GL. 2014. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 111:E3234–3242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.