22
Views
14
CrossRef citations to date
0
Altmetric
Article

Evolutionary Emergence of a Novel Splice Variant with an Opposite Effect on the Cell Cycle

&
Pages 2203-2214 | Received 19 Feb 2015, Accepted 06 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Black DL. 2000. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103:367–370. http://dx.doi.org/10.1016/S0092-8674(00)00128-8.
  • Maniatis T, Tasic B. 2002. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243. http://dx.doi.org/10.1038/418236a.
  • Nilsen TW, Graveley BR. 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. http://dx.doi.org/10.1038/nature08909.
  • Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ. 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593. http://dx.doi.org/10.1126/science.1230612.
  • Merkin J, Russell C, Chen P, Burge CB. 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1599. http://dx.doi.org/10.1126/science.1228186.
  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. http://dx.doi.org/10.1038/ng.259.
  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. http://dx.doi.org/10.1038/nature07509.
  • Feng D, Xie J. 2013. Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA 4:631–649. http://dx.doi.org/10.1002/wrna.1184.
  • Singh RK, Cooper TA. 2012. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482. http://dx.doi.org/10.1016/j.molmed.2012.06.006.
  • Keren H, Lev-Maor G, Ast G. 2010. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355. http://dx.doi.org/10.1038/nrg2776.
  • Moore MJ. 2000. Intron recognition comes of AGe. Nat Struct Biol 7:14–16. http://dx.doi.org/10.1038/71207.
  • Liu G, Razanau A, Hai Y, Yu J, Sohail M, Lobo VG, Chu J, Kung SK, Xie J. 2012. A conserved serine of heterogeneous nuclear ribonucleoprotein L (hnRNP L) mediates depolarization-regulated alternative splicing of potassium channels. J Biol Chem 287:22709–22716. http://dx.doi.org/10.1074/jbc.M112.357343.
  • Xie J, Black DL. 2001. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410:936–939. http://dx.doi.org/10.1038/35073593.
  • Xie J, Jan C, Stoilov P, Park J, Black DL. 2005. A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11:1825–1834. http://dx.doi.org/10.1261/rna.2171205.
  • Yu J, Hai Y, Liu G, Fang T, Kung SK, Xie J. 2009. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J Biol Chem 284:1505–1513. http://dx.doi.org/10.1074/jbc.M805113200.
  • Caputi M, Zahler AM. 2001. Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H'/F/2H9 family. J Biol Chem 276:43850–43859. http://dx.doi.org/10.1074/jbc.M102861200.
  • Chou MY, Rooke N, Turck CW, Black DL. 1999. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19:69–77.
  • Dominguez C, Allain FH. 2006. NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Res 34:3634–3645. http://dx.doi.org/10.1093/nar/gkl488.
  • Garneau D, Revil T, Fisette JF, Chabot B. 2005. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 280:22641–22650. http://dx.doi.org/10.1074/jbc.M501070200.
  • Honoré B, Rasmussen HH, Vorum H, Dejgaard K, Liu X, Gromov P, Madsen P, Gesser B, Tommerup N, Celis JE. 1995. Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes. J Biol Chem 270:28780–28789. http://dx.doi.org/10.1074/jbc.270.48.28780.
  • Mahé D, Mähl P, Gattoni R, Fischer N, Mattei MG, Stévenin J, Fuchs JP. 1997. Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins. Relation with splicing and early heat shock-induced splicing arrest. J Biol Chem 272:1827–1836.
  • McCullough AJ, Berget SM. 1997. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 17:4562–4571.
  • Schaub MC, Lopez SR, Caputi M. 2007. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 282:13617–13626. http://dx.doi.org/10.1074/jbc.M700774200.
  • Wang E, Dimova N, Cambi F. 2007. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res 35:4164–4178. http://dx.doi.org/10.1093/nar/gkm387.
  • Chen CD, Kobayashi R, Helfman DM. 1999. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 13:593–606. http://dx.doi.org/10.1101/gad.13.5.593.
  • Hai Y, Cao W, Liu G, Hong SP, Elela SA, Klinck R, Chu J, Xie J. 2008. A G-tract element in apoptotic agents-induced alternative splicing. Nucleic Acids Res 36:3320–3331. http://dx.doi.org/10.1093/nar/gkn207.
  • Han K, Yeo G, An P, Burge CB, Grabowski PJ. 2005. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol 3:e158. http://dx.doi.org/10.1371/journal.pbio.0030158.
  • Sironi M, Menozzi G, Riva L, Cagliani R, Comi GP, Bresolin N, Giorda R, Pozzoli U. 2004. Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res 32:1783–1791. http://dx.doi.org/10.1093/nar/gkh341.
  • Sohail M, Cao W, Mahmood N, Myschyshyn M, Hong SP, Xie J. 2014. Evolutionarily emerged G tracts between the polypyrimidine tract and 3′ AG are splicing silencers enriched in genes involved in cancer. BMC Genomics 15:1143. http://dx.doi.org/10.1186/1471-2164-15-1143.
  • Boisvert FM, Cote J, Boulanger MC, Richard S. 2003. A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteomics 2:1319–1330. http://dx.doi.org/10.1074/mcp.M300088-MCP200.
  • Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA. 2006. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630. http://dx.doi.org/10.1038/ncb1413.
  • Majumder S, Alinari L, Roy S, Miller T, Datta J, Sif S, Baiocchi R, Jacob ST. 2010. Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription. J Cell Biochem 109:553–563. http://dx.doi.org/10.1002/jcb.22432.
  • Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. 2004. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24:9630–9645. http://dx.doi.org/10.1128/MCB.24.21.9630-9645.2004.
  • Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA. 2010. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 24:2772–2777. http://dx.doi.org/10.1101/gad.606110.
  • Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U. 2001. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11:1990–1994. http://dx.doi.org/10.1016/S0960-9822(01)00592-9.
  • Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB. 2008. Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439. http://dx.doi.org/10.1038/ncb1802.
  • Powers MA, Fay MM, Factor RE, Welm AL, Ullman KS. 2011. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res 71:5579–5587. http://dx.doi.org/10.1158/0008-5472.CAN-11-0458.
  • Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E. 2013. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27:1903–1916. http://dx.doi.org/10.1101/gad.219899.113.
  • Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor RB. 2003. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11:1055–1066. http://dx.doi.org/10.1016/S1097-2765(03)00101-1.
  • Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JW, Cerdan PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ. 2010. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468:112–116. http://dx.doi.org/10.1038/nature09470.
  • Gkountela S, Li Z, Chin CJ, Lee SA, Clark AT. 2014. PRMT5 is required for human embryonic stem cell proliferation but not pluripotency. Stem Cell Rev 10:230–239. http://dx.doi.org/10.1007/s12015-013-9490-z.
  • Nagamatsu G, Kosaka T, Kawasumi M, Kinoshita T, Takubo K, Akiyama H, Sudo T, Kobayashi T, Oya M, Suda T. 2011. A germ cell-specific gene, Prmt5, works in somatic cell reprogramming. J Biol Chem 286:10641–10648. http://dx.doi.org/10.1074/jbc.M110.216390.
  • Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. 2007. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218. http://dx.doi.org/10.1038/nature05458.
  • Scoumanne A, Zhang J, Chen X. 2009. PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 37:4965–4976. http://dx.doi.org/10.1093/nar/gkp516.
  • Wei TY, Juan CC, Hisa JY, Su LJ, Lee YC, Chou HY, Chen JM, Wu YC, Chiu SC, Hsu CP, Liu KL, Yu CT. 2012. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci 103:1640–1650. http://dx.doi.org/10.1111/j.1349-7006.2012.02367.x.
  • Bao X, Zhao S, Liu T, Liu Y, Yang X. 2013. Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 61:206–217. http://dx.doi.org/10.1369/0022155413475452.
  • Kung SK. 2010. Introduction of shRNAs into primary NK cells with lentivirus. Methods Mol Biol 612:233–247. http://dx.doi.org/10.1007/978-1-60761-362-6_16.
  • An DS, Kung SK, Bonifacino A, Wersto RP, Metzger ME, Agricola BA, Mao SH, Chen IS, Donahue RE. 2001. Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol 75:3547–3555. http://dx.doi.org/10.1128/JVI.75.8.3547-3555.2001.
  • Black DL. 1992. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69:795–807. http://dx.doi.org/10.1016/0092-8674(92)90291-J.
  • Ma S, Liu G, Sun Y, Xie J. 2007. Relocalization of the polypyrimidine tract-binding protein during PKA-induced neurite growth. Biochim Biophys Acta 1773:912–923. http://dx.doi.org/10.1016/j.bbamcr.2007.02.006.
  • Sharma S, Falick AM, Black DL. 2005. Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 19:485–496. http://dx.doi.org/10.1016/j.molcel.2005.07.014.
  • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. http://dx.doi.org/10.1186/gb-2010-11-10-r106.
  • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. http://dx.doi.org/10.1093/bioinformatics/btp616.
  • Graveley BR, Hertel KJ, Maniatis T. 1998. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J 17:6747–6756. http://dx.doi.org/10.1093/emboj/17.22.6747.
  • Hertel KJ, Maniatis T. 1998. The function of multisite splicing enhancers. Mol Cell 1:449–455. http://dx.doi.org/10.1016/S1097-2765(00)80045-3.
  • Martinez-Contreras R, Fisette JF, Nasim FU, Madden R, Cordeau M, Chabot B. 2006. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 4:e21. http://dx.doi.org/10.1371/journal.pbio.0040021.
  • Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. 2014. Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 21:997–1005. http://dx.doi.org/10.1038/nsmb.2906.
  • Xue Y, Zhou Y, Wu T, Zhu T, Ji X, Kwon YS, Zhang C, Yeo G, Black DL, Sun H, Fu XD, Zhang Y. 2009. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell 36:996–1006. http://dx.doi.org/10.1016/j.molcel.2009.12.003.
  • Lee JA, Xing Y, Nguyen D, Xie J, Lee CJ, Black DL. 2007. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements. PLoS Biol 5:e40. http://dx.doi.org/10.1371/journal.pbio.0050040.
  • Koren E, Lev-Maor G, Ast G. 2007. The emergence of alternative 3′ and 5′ splice site exons from constitutive exons. PLoS Comput Biol 3:e95. http://dx.doi.org/10.1371/journal.pcbi.0030095.
  • Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O, Harr MW, Levine RL, Xu H, Tefferi A, Deblasio A, Hatlen M, Menendez S, Nimer SD. 2011. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19:283–294. http://dx.doi.org/10.1016/j.ccr.2010.12.020.
  • Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. 2012. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS One 7:e44033. http://dx.doi.org/10.1371/journal.pone.0044033.
  • Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S. 2010. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res 20:1023–1033. http://dx.doi.org/10.1038/cr.2010.56.
  • Meloche S, Pouyssegur J. 2007. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239. http://dx.doi.org/10.1038/sj.onc.1210414.
  • Tong X, Xie D, O'Kelly J, Miller CW, Muller-Tidow C, Koeffler HP. 2001. Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem 276:47709–47714. http://dx.doi.org/10.1074/jbc.M107878200.
  • Vairapandi M, Balliet AG, Hoffman B, Liebermann DA. 2002. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192:327–338. http://dx.doi.org/10.1002/jcp.10140.
  • Noguchi K, Fukazawa H, Murakami Y, Uehara Y. 2002. Nek11, a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem 277:39655–39665. http://dx.doi.org/10.1074/jbc.M204599200.
  • Church DL, Guan KL, Lambie EJ. 1995. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121:2525–2535.
  • Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q. 2002. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21:8696–8704. http://dx.doi.org/10.1038/sj.onc.1206034.
  • Kubota S, Hattori T, Shimo T, Nakanishi T, Takigawa M. 2000. Novel intracellular effects of human connective tissue growth factor expressed in Cos-7 cells. FEBS Lett 474:58–62. http://dx.doi.org/10.1016/S0014-5793(00)01573-8.
  • Melixetian M, Klein DK, Sorensen CS, Helin K. 2009. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253. http://dx.doi.org/10.1038/ncb1969.
  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. 2010. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543, 1p following 143. http://dx.doi.org/10.1038/nm.2144.
  • Singh AK, Swarnalatha M, Kumar V. 2011. c-ETS1 facilitates G1/S-phase transition by up-regulating cyclin E and CDK2 genes and cooperates with hepatitis B virus X protein for their deregulation. J Biol Chem 286:21961–21970. http://dx.doi.org/10.1074/jbc.M111.238238.
  • Lacroix M, El Messaoudi S, Rodier G, Le Cam A, Sardet C, Fabbrizio E. 2008. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9:452–458. http://dx.doi.org/10.1038/embor.2008.45.
  • Xie J. 2014. Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing. Cell Mol Life Sci 71:4347–4360. http://dx.doi.org/10.1007/s00018-014-1688-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.