46
Views
47
CrossRef citations to date
0
Altmetric
Article

The Schizosaccharomyces pombe Pfh1p DNA Helicase Is Essential for the Maintenance of Nuclear and Mitochondrial DNA

, &
Pages 6594-6608 | Received 06 Feb 2008, Accepted 13 Aug 2008, Published online: 27 Mar 2023

REFERENCES

  • Alvaro, D., M. Lisby, and R. Rothstein. 2007. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet. 3:e228.
  • Aslett, M., and V. Wood. 2006. Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast 23:913–919.
  • Azvolinsky, A., S. Dunaway, J. Torres, J. Bessler, and V. A. Zakian. 2006. The Saccharomyces cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20:3104–3116.
  • Beach, D. H., and A. J. Klar. 1984. Rearrangements of the transposable mating-type cassettes of fission yeast. EMBO J. 3:603–610.
  • Boule, J., L. Vega, and V. Zakian. 2005. The Yeast Pif1p helicase removes telomerase from DNA. Nature 438:57–61.
  • Boule, J. B., and V. A. Zakian. 2006. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34:4147–4153.
  • Boule, J. B., and V. A. Zakian. 2007. The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35:5809–5818.
  • Budd, M. E., C. C. Reis, S. Smith, K. Myung, and J. L. Campbell. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26:2490–2500.
  • Budd, M. E., A. H. Tong, P. Polaczek, X. Peng, C. Boone, and J. L. Campbell. 2005. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet. 1:e61.
  • Contamine, V., and M. Picard. 2000. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol. Mol. Biol. Rev. 64:281–315.
  • Coulon, S., E. Noguchi, C. Noguchi, L. L. Du, T. M. Nakamura, and P. Russell. 2006. Rad22Rad52-dependent repair of ribosomal DNA repeats cleaved by Slx1-Slx4 endonuclease. Mol. Biol. Cell 17:2081–2090.
  • Del Giudice, L. 1981. Cloning of mitochondrial DNA from the petite negative yeast Schizosaccharomyces pombe in the bacterial plasmid pBR322. Mol. Gen. Genet. 184:465–470.
  • Doe, C. L., F. Osman, J. Dixon, and M. C. Whitby. 2004. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Res. 32:5570–5581.
  • Doe, C. L., F. Osman, J. Dixon, and M. C. Whitby. 2000. The Holliday junction resolvase SpCCE1 prevents mitochondrial DNA aggregation in Schizosaccharomyces pombe. Mol. Gen. Genet. 263:889–897.
  • Foury, F., and J. Kolodynski. 1983. pif mutation blocks recombination between mitochondrial rho+ and rho− genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5345–5349.
  • Foury, F., and A. Lahaye. 1987. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J. 6:1441–1449.
  • Foury, F., T. Roganti, N. Lecrenier, and B. Purnelle. 1998. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440:325–331.
  • Futami, K., A. Shimamoto, and Y. Furuichi. 2007. Mitochondrial and nuclear localization of human Pif1 helicase. Biol. Pharm. Bull. 30:1685–1692.
  • Hayles, J., and P. Nurse. 1992. Genetics of the fission yeast Schizosaccharomyces pombe. Annu. Rev. Genet. 26:373–402.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Ivessa, A. S., B. A. Lenzmeier, J. B. Bessler, L. K. Goudsouzian, S. L. Schnakenberg, and V. A. Zakian. 2003. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12:1525–1536.
  • Ivessa, A. S., J.-Q. Zhou, V. P. Schulz, E. M. Monson, and V. A. Zakian. 2002. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and sub-telomeric DNA. Genes Dev. 16:1383–1396.
  • Ivessa, A. S., J.-Q. Zhou, and V. A. Zakian. 2000. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489.
  • Kao, H. I., and R. A. Bambara. 2003. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit. Rev. Biochem. Mol. Biol. 38:433–452.
  • Keil, R. L., and A. D. McWilliams. 1993. A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718.
  • Kudo, N., S. Khochbin, K. Nishi, K. Kitano, M. Yanagida, M. Yoshida, and S. Horinouchi. 1997. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J. Biol. Chem. 272:29742–29751.
  • Lahaye, A., S. Leterme, and F. Foury. 1993. PIF1 DNA helicase from Saccharomyces cerevisiae: biochemical characterization of the enzyme. J. Biol. Chem. 268:26155–26161.
  • Lahaye, A., H. Stahl, D. Thines-Sempoux, and F. Foury. 1991. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10:997–1007.
  • Lang, B. F. 1993. The mitochondrial genome of Schizosaccharomyces pombe, p. 3118-3119. In S. J. O'Brien (ed.), Genetic maps, 6th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Lustig, A. J., and T. D. Petes. 1986. Identification of yeast mutants with altered telomere structure. Proc. Natl. Acad. Sci. USA 83:1398–1402.
  • Mateyak, M., and V. Zakian. 2006. Human PIF helicase is cell cycle regulated and associates with telomerase. Cell Cycle 23:2796–2804.
  • Matsuyama, A., R. Arai, Y. Yashiroda, A. Shirai, A. Kamata, S. Sekido, Y. Kobayashi, A. Hashimoto, M. Hamamoto, Y. Hiraoka, S. Horinouchi, and M. Yoshida. 2006. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24:841–847.
  • Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130.
  • Meister, P., M. Poidevin, S. Francesconi, I. Tratner, P. Zarzov, and G. Baldacci. 2003. Nuclear factories for signalling and repairing DNA double strand breaks in living fission yeast. Nucleic Acids Res. 31:5064–5073.
  • Moreno, M. B., A. Duran, and J. C. Ribas. 2000. A family of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast 16:861–872.
  • Morita, T., and K. Takegawa. 2004. A simple and efficient procedure for transformation of Schizosaccharomyces pombe. Yeast 21:613–617.
  • Myung, K., C. Chen, and R. D. Kolodner. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073–1076.
  • O'Rourke, T. W., N. A. Doudican, H. Zhang, J. S. Eaton, P. W. Doetsch, and G. S. Shadel. 2005. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability. Gene 354:86–92.
  • Ohi, R., A. Feoktistova, and K. L. Gould. 1996. Construction of vectors and a genomic library for use with his3-deficient strains of Schizosaccharomyces pombe. Gene 174:315–318.
  • Ooi, S. L., D. D. Shoemaker, and J. D. Boeke. 2003. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35:277–286.
  • Pidoux, A. L., and R. C. Allshire. 2005. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:569–579.
  • Ryu, G. H., H. Tanaka, D. H. Kim, J. H. Kim, S. H. Bae, Y. N. Kwon, J. S. Rhee, S. A. MacNeill, and Y. S. Seo. 2004. Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast. Nucleic Acids Res. 32:4205–4216.
  • Schmidt, K. H., and R. D. Kolodner. 2004. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell. Biol. 24:3213–3226.
  • Schulz, V. P., and V. A. Zakian. 1994. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76:145–155.
  • Snow, B., M. Mateyak, J. Paderova, A. Wakeham, C. Iorio, V. Zakian, J. Squire, and L. Harrington. 2007. Murine pif1 interacts with telomerase and is dispensable for telomere function in vivo. Mol. Cell. Biol. 27:1017–1026.
  • Spelbrink, J. N., F. Y. Li, V. Tiranti, K. Nikali, Q. P. Yuan, M. Tariq, S. Wanrooij, N. Garrido, G. Comi, L. Morandi, L. Santoro, A. Toscano, G. M. Fabrizi, H. Somer, R. Croxen, D. Beeson, J. Poulton, A. Suomalainen, H. T. Jacobs, M. Zeviani, and C. Larsson. 2001. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28:223–231.
  • Sugawara, N. 1989. DNA sequences at the telomeres of the fission yeast Schizosaccharomyces pombe. Ph.D. thesis. Harvard University, Cambridge, MA.
  • Tanaka, H., G. H. Ryu, Y. S. Seo, K. Tanaka, H. Okayama, S. A. MacNeill, and Y. Yuasa. 2002. The fission yeast pfh1+ gene encodes an essential 5′ to 3′ DNA helicase required for the completion of S-phase. Nucleic Acids Res. 30:4728–4739.
  • Taylor, S., H. Zhang, J. Eaton, M. Rodeheffer, M. Lebedeva, T. O'rourke, W. Siede, and G. Shadel. 2005. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol. Biol. Cell 16:3010–3018.
  • Tong, A. H., M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader, N. Page, M. Robinson, S. Raghibizadeh, C. W. Hogue, H. Bussey, B. Andrews, M. Tyers, and C. Boone. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368.
  • Torres, J. Z., J. B. Bessler, and V. A. Zakian. 2004. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the Saccharomyces cerevisiae DNA helicase Rrm3p. Genes Dev. 18:498–503.
  • Torres, J. Z., S. L. Schnakenberg, and V. A. Zakian. 2004. The Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra S phase checkpoint and fork restart activities. Mol. Cell. Biol. 24:3198–3212.
  • Tyynismaa, H., H. Sembongi, M. Bokori-Brown, C. Granycome, N. Ashley, J. Poulton, A. Jalanko, J. N. Spelbrink, I. J. Holt, and A. Suomalainen. 2004. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum. Mol. Genet. 13:3219–3227.
  • Uzawa, S., and M. Yanagida. 1992. Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J. Cell Sci. 101:267–275.
  • Van Dyck, E., F. Foury, B. Stillman, and S. J. Brill. 1992. A single-stranded DNA binding protein required for mitochondrial DNA replication in Saccharomyces cerevisiae is homologous to Escherichia coli SSB. EMBO J. 11:3421–3430.
  • Wagner, M., G. Price, and R. Rothstein. 2006. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 174:555–573.
  • Wan, S., H. Capasso, and N. C. Walworth. 1999. The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast. Yeast 15:821–828.
  • Werler, P. J., E. Hartsuiker, and A. M. Carr. 2003. A simple Cre-loxP method for chromosomal N-terminal tagging of essential and nonessential Schizosaccharomyces pombe genes. Gene 304:133–141.
  • Zhang, D. H., B. Zhou, Y. Huang, L. X. Xu, and J. Q. Zhou. 2006. The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res. 34:1393–1404.
  • Zhou, J.-Q., E. M. Monson, S.-C. Teng, V. P. Schulz, and V. A. Zakian. 2000. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289:771–774.
  • Zhou, J.-Q., H. Qi, V. Schulz, M. Mateyak, E. Monson, and V. Zakian. 2002. Schizosaccharomyces pombe pfh1+ encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol. Biol. Cell 13:2180–2191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.