163
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization

, & ORCID Icon
Article: e00218-17 | Received 26 Apr 2017, Accepted 25 Aug 2017, Published online: 18 Mar 2023

REFERENCES

  • Jantzen HM, Admon A, Bell SP, Tjian R. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830–836. https://doi.org/10.1038/344830a0.
  • Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65:2334–2359. https://doi.org/10.1007/s00018-008-8027-0.
  • Roussel P, Andre C, Masson C, Geraud G, Hernandez-Verdun D. 1993. Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104(Part 2):327–337.
  • Roussel P, Andre C, Comai L, Hernandez-Verdun D. 1996. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246. https://doi.org/10.1083/jcb.133.2.235.
  • Jordan P, Mannervik M, Tora L, Carmo-Fonseca M. 1996. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234. https://doi.org/10.1083/jcb.133.2.225.
  • O'Sullivan AC, Sullivan GJ, McStay B. 2002. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22:657–668. https://doi.org/10.1128/MCB.22.2.657-668.2002.
  • Chen D, Belmont AS, Huang S. 2004. Upstream binding factor association induces large-scale chromatin decondensation. Proc Natl Acad Sci U S A 101:15106–15111. https://doi.org/10.1073/pnas.0404767101.
  • Mais C, Wright JE, Prieto JL, Raggett SL, McStay B. 2005. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64. https://doi.org/10.1101/gad.310705.
  • Prieto JL, McStay B. 2007. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–2054. https://doi.org/10.1101/gad.436707.
  • Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD. 2008. UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 183:1259–1274. https://doi.org/10.1083/jcb.200805146.
  • Stros M, Launholt D, Grasser KD. 2007. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 64:2590–2606. https://doi.org/10.1007/s00018-007-7162-3.
  • Jantzen HM, Chow AM, King DS, Tjian R. 1992. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription. Genes Dev 6:1950–1963. https://doi.org/10.1101/gad.6.10.1950.
  • Tuan JC, Zhai W, Comai L. 1999. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation. Mol Cell Biol 19:2872–2879. https://doi.org/10.1128/MCB.19.4.2872.
  • Leblanc B, Read C, Moss T. 1993. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J 12:513–525.
  • Bazett-Jones DP, Leblanc B, Herfort M, Moss T. 1994. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137. https://doi.org/10.1126/science.8178172.
  • O'Mahony DJ, Rothblum LI. 1991. Identification of two forms of the RNA polymerase I transcription factor UBF. Proc Natl Acad Sci U S A 88:3180–3184. https://doi.org/10.1073/pnas.88.8.3180.
  • McStay B, Frazier MW, Reeder RH. 1991. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription. Genes Dev 5:1957–1968. https://doi.org/10.1101/gad.5.11.1957.
  • Copenhaver GP, Putnam CD, Denton ML, Pikaard CS. 1994. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res 22:2651–2657. https://doi.org/10.1093/nar/22.13.2651.
  • Maeda Y, Hisatake K, Kondo T, Hanada K, Song CZ, Nishimura T, Muramatsu M. 1992. Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J 11:3695–3704.
  • Dimitrov SI, Bachvarov D, Moss T. 1993. Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach. DNA Cell Biol 12:275–281. https://doi.org/10.1089/dna.1993.12.275.
  • Lin CY, Navarro S, Reddy S, Comai L. 2006. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res 34:4752–4766. https://doi.org/10.1093/nar/gkl581.
  • Beckmann H, Chen JL, O'Brien T, Tjian R. 1995. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science 270:1506–1509. https://doi.org/10.1126/science.270.5241.1506.
  • Hempel WM, Cavanaugh AH, Hannan RD, Taylor L, Rothblum LI. 1996. The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol Cell Biol 16:557–563. https://doi.org/10.1128/MCB.16.2.557.
  • Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. 2001. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 20:1373–1382. https://doi.org/10.1093/emboj/20.6.1373.
  • Paulmurugan R, Gambhir SS. 2003. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589. https://doi.org/10.1021/ac020731c.
  • Hu CH, McStay B, Jeong SW, Reeder RH. 1994. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882. https://doi.org/10.1128/MCB.14.5.2871.
  • Ueshima S, Nagata K, Okuwaki M. 2014. Upstream binding factor-dependent and pre-rRNA transcription-independent association of pre-rRNA processing factors with rRNA gene. Biochem Biophys Res Commun 443:22–27. https://doi.org/10.1016/j.bbrc.2013.11.039.
  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S. 2005. Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J Cell Biol 168:41–54. https://doi.org/10.1083/jcb.200407182.
  • O'Mahony DJ, Xie WQ, Smith SD, Singer HA, Rothblum LI. 1992. Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. In vitro dephosphorylation of UBF reduces its transactivation properties. J Biol Chem 267:35–38.
  • Voit R, Schnapp A, Kuhn A, Rosenbauer H, Hirschmann P, Stunnenberg HG, Grummt I. 1992. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J 11:2211–2218.
  • Sudbeck P, Scherer G. 1997. Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem 272:27848–27852. https://doi.org/10.1074/jbc.272.44.27848.
  • Stros M, Stokrova J, Thomas JO. 1994. DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res 22:1044–1051. https://doi.org/10.1093/nar/22.6.1044.
  • Wisniewski JR, Szewczuk Z, Petry I, Schwanbeck R, Renner U. 1999. Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity. J Biol Chem 274:20116–20122. https://doi.org/10.1074/jbc.274.40.28175.
  • Watson M, Stott K, Thomas JO. 2007. Mapping intramolecular interactions between domains in HMGB1 using a tail-truncation approach. J Mol Biol 374:1286–1297. https://doi.org/10.1016/j.jmb.2007.09.075.
  • Ribeiro FS, de Abreu da Silva IC, Carneiro VC, Belgrano Fdos S, Mohana-Borges R, de Andrade Rosa I, Benchimol M, Souza NR, Mesquita RD, Sorgine MH, Gazos-Lopes F, Vicentino AR, Wu W, de Moraes Maciel R, da Silva-Neto MA, Fantappie MR. 2012. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1) protein with a unique regulatory C-terminus. PLoS One 7:e40192. https://doi.org/10.1371/journal.pone.0040192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.