150
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The RNA Helicase Ded1 Regulates Translation and Granule Formation during Multiple Phases of Cellular Stress Responses

, & ORCID Icon
Article: e00244-21 | Received 01 Jun 2021, Accepted 22 Oct 2021, Published online: 27 Feb 2023

REFERENCES

  • Saavedra C, Tung KS, Amberg DC, Hopper AK, Cole CN. 1996. Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev 10:1608–1620. https://doi.org/10.1101/gad.10.13.1608.
  • Albig AR, Decker CJ. 2001. The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 12:3428–3438. https://doi.org/10.1091/mbc.12.11.3428.
  • Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. 2016. The integrated stress response. EMBO Rep 17:1374–1395. https://doi.org/10.15252/embr.201642195.
  • Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004.
  • Liu B, Qian SB. 2014. Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA 5:301–315. https://doi.org/10.1002/wrna.1212.
  • Crawford RA, Pavitt GD. 2019. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 36:5–21. https://doi.org/10.1002/yea.3349.
  • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978.
  • Gerashchenko MV, Lobanov AV, Gladyshev VN. 2012. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci USA 109:17394–17399. https://doi.org/10.1073/pnas.1120799109.
  • Guzikowski AR, Chen YS, Zid BM. 2019. Stress-induced mRNP granules: Form and function of processing bodies and stress granules. Wiley Interdiscip Rev RNA 10:e1524. https://doi.org/10.1002/wrna.1524.
  • Van Treeck B, Parker R. 2018. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174:791–802. https://doi.org/10.1016/j.cell.2018.07.023.
  • Ivanov P, Kedersha N, Anderson P. 2019. Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 11:a032813. https://doi.org/10.1101/cshperspect.a032813.
  • Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68:808–820. https://doi.org/10.1016/j.molcel.2017.10.015.
  • Moon SL, Morisaki T, Khong A, Lyon K, Parker R, Stasevich TJ. 2019. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol 21:162–168. https://doi.org/10.1038/s41556-018-0263-4.
  • Wilbertz JH, Voigt F, Horvathova I, Roth G, Zhan Y, Chao JA. 2019. Single-molecule imaging of mRNA localization and regulation during the integrated stress response. Mol Cell 73:946–958. https://doi.org/10.1016/j.molcel.2018.12.006.
  • Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. 2020. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell 183:1801–1812. https://doi.org/10.1016/j.cell.2020.11.010.
  • Sharma D, Jankowsky E. 2014. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit Rev Biochem Mol Biol 49:343–360. https://doi.org/10.3109/10409238.2014.931339.
  • Shen L, Pelletier J. 2020. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation. Int J Mol Sci 21:4402. https://doi.org/10.3390/ijms21124402.
  • Linder P, Jankowsky E. 2011. From unwinding to clamping: the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516. https://doi.org/10.1038/nrm3154.
  • Hilliker A, Gao Z, Jankowsky E, Parker R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell 43:962–972. https://doi.org/10.1016/j.molcel.2011.08.008.
  • Senissar M, Le Saux A, Belgareh-Touze N, Adam C, Banroques J, Tanner NK. 2014. The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res 42:10005–10022. https://doi.org/10.1093/nar/gku584.
  • Putnam AA, Gao Z, Liu F, Jia H, Yang Q, Jankowsky E. 2015. Division of labor in an oligomer of the DEAD-Box RNA helicase Ded1p. Mol Cell 59:541–552. https://doi.org/10.1016/j.molcel.2015.06.030.
  • Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E. 2016. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. Elife 5:e16408. https://doi.org/10.7554/eLife.16408.
  • Gulay S, Gupta N, Lorsch JR, Hinnebusch AG. 2020. Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo. Elife 9:e58243. https://doi.org/10.7554/eLife.58243.
  • Sen ND, Zhou F, Ingolia NT, Hinnebusch AG. 2015. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res 25:1196–1205. https://doi.org/10.1101/gr.191601.115.
  • Guenther UP, Weinberg DE, Zubradt MM, Tedeschi FA, Stawicki BN, Zagore LL, Brar GA, Licatalosi DD, Bartel DP, Weissman JS, Jankowsky E. 2018. The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs. Nature 559:130–134. https://doi.org/10.1038/s41586-018-0258-0.
  • Aryanpur PP, Regan CA, Collins JM, Mittelmeier TM, Renner DM, Vergara AM, Brown NP, Bolger TA. 2017. Gle1 regulates RNA binding of the DEAD-box helicase Ded1 in its complex role in translation initiation. Mol Cell Biol 37. https://doi.org/10.1128/MCB.00139-17.
  • Gupta N, Lorsch JR, Hinnebusch AG. 2018. Yeast Ded1 promotes 48S translation pre-initiation complex assembly in an mRNA-specific and eIF4F-dependent manner. Elife 7:5291165. https://doi.org/10.7554/eLife.38892.
  • Shih JW, Wang WT, Tsai TY, Kuo CY, Li HK, Wu Lee YH. 2012. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem J 441:119–129. https://doi.org/10.1042/BJ20110739.
  • Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 2016. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498. https://doi.org/10.1016/j.cell.2015.12.038.
  • Hondele M, Sachdev R, Heinrich S, Wang J, Vallotton P, Fontoura BMA, Weis K. 2019. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573:144–148. https://doi.org/10.1038/s41586-019-1502-y.
  • Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch AW, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther UP, Hentze MW, Moses AM, Hyman AA, Kramer G, Kreysing M, Franzmann TM, Alberti S. 2020. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181:818–831. https://doi.org/10.1016/j.cell.2020.04.009.
  • Aryanpur PP, Renner DM, Rodela E, Mittelmeier TM, Byrd A, Bolger TA. 2019. The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition. Mol Biol Cell 30:2171–2184. https://doi.org/10.1091/mbc.E18-11-0702.
  • Buchan JR, Muhlrad D, Parker R. 2008. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183:441–455. https://doi.org/10.1083/jcb.200807043.
  • Zwietering MH, Jongenburger I, Rombouts FM, van 't Riet K. 1990. Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990.
  • Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, Ashe MP, Grant CM. 2006. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281:29011–29021. https://doi.org/10.1074/jbc.M601545200.
  • Brown NP, Vergara AM, Whelan AB, Guerra P, Bolger TA. 2021. Medulloblastoma-associated mutations in the DEAD-box RNA helicase DDX3X/DED1 cause specific defects in translation. J Biol Chem 296:100296. https://doi.org/10.1016/j.jbc.2021.100296:100296.
  • Beckham C, Hilliker A, Cziko AM, Noueiry A, Ramaswami M, Parker R. 2008. The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell 19:984–993. https://doi.org/10.1091/mbc.e07-09-0954.
  • Richter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on the verge of death. Mol Cell 40:253–266. https://doi.org/10.1016/j.molcel.2010.10.006.
  • Advani VM, Ivanov P. 2019. Translational Control under Stress: Reshaping the Translatome. Bioessays 41:e1900009. https://doi.org/10.1002/bies.201900009.
  • Buchan JR, Parker R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941. https://doi.org/10.1016/j.molcel.2009.11.020.
  • Cui BC, Sikirzhytski V, Aksenova M, Lucius MD, Levon GH, Mack ZT, Pollack C, Odhiambo D, Broude E, Lizarraga SB, Wyatt MD, Shtutman M. 2020. Pharmacological inhibition of DEAD-Box RNA Helicase 3 attenuates stress granule assembly. Biochem Pharmacol 182:114280. https://doi.org/10.1016/j.bcp.2020.114280.
  • Lai MC, Lee YH, Tarn WY. 2008. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as Tip-associated protein and participates in translational control. Mol Biol Cell 19:3847–3858. https://doi.org/10.1091/mbc.e07-12-1264.
  • Buchan JR. 2014. mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030. https://doi.org/10.4161/15476286.2014.972208.
  • Berset C, Trachsel H, Altmann M. 1998. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:4264–4269. https://doi.org/10.1073/pnas.95.8.4264.
  • Kelly SP, Bedwell DM. 2015. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae. RNA 21:898–910. https://doi.org/10.1261/rna.045211.114.
  • Tauber D, Tauber G, Parker R. 2020. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem Sci 45:764–778. https://doi.org/10.1016/j.tibs.2020.05.002.
  • Clarkson BK, Gilbert WV, Doudna JA. 2010. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One 5:e9114. https://doi.org/10.1371/journal.pone.0009114.
  • Bolger TA, Wente SR. 2011. Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J Biol Chem 286:39750–39759. https://doi.org/10.1074/jbc.M111.299321.
  • Poornima G, Shah S, Vignesh V, Parker R, Rajyaguru PI. 2016. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 44:9358–9368. https://doi.org/10.1093/nar/gkw762.
  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596. https://doi.org/10.1016/0092-8674(92)90193-g.
  • Eshleman N, Liu G, McGrath K, Parker R, Buchan JR. 2016. Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy. RNA 22:1200–1214. https://doi.org/10.1261/rna.057224.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.