52
Views
22
CrossRef citations to date
0
Altmetric
Article

Cortactin Modulates RhoA Activation and Expression of Cip/Kip Cyclin-Dependent Kinase Inhibitors To Promote Cell Cycle Progression in 11q13-Amplified Head and Neck Squamous Cell Carcinoma Cells

, , , &
Pages 5057-5070 | Received 03 Mar 2010, Accepted 16 Aug 2010, Published online: 20 Mar 2023

REFERENCES

  • Abukhdeir, A. M., and B. H. Park. 2008. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev. Mol. Med. 10:e19.
  • Alt, J. R., A. B. Gladden, and J. A. Diehl. 2002. p21Cip1 promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J. Biol. Chem. 277:8517–8523.
  • Bain, J., L. Plater, M. Elliott, N. Shpiro, C. J. Hastie, H. McLauchlan, I. Klevernic, J. S. Arthur, D. R. Alessi, and P. Cohen. 2007. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408:297–315.
  • Bowden, E. T., M. Barth, D. Thomas, R. I. Glazer, and S. C. Mueller. 1999. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18:4440–4449.
  • Bryce, N. S., E. S. Clark, J. L. Leysath, J. D. Currie, D. J. Webb, and A. M. Weaver. 2005. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr. Biol. 15:1276–1285.
  • Caldon, C. E., R. J. Daly, R. L. Sutherland, and E. A. Musgrove. 2006. Cell cycle control in breast cancer cells. J. Cell Biochem. 97:261–274.
  • Carrano, A. C., E. Eytan, A. Hershko, and M. Pagano. 1999. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1:193–199.
  • Cheng, M., P. Olivier, J. A. Diehl, M. Fero, M. F. Roussel, J. M. Roberts, and C. J. Sherr. 1999. The p21(Cip1) and p27(Kip1) CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18:1571–1583.
  • Clark, E. S., B. Brown, A. S. Whigham, A. Kochaishvili, W. G. Yarbrough, and A. M. Weaver. 2009. Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene 28:431–444.
  • Clark, E. S., and A. M. Weaver. 2008. A new role for cortactin in invadopodia: regulation of protease secretion. Eur. J. Cell Biol. 87:581–590.
  • Clark, E. S., A. S. Whigham, W. G. Yarbrough, and A. M. Weaver. 2007. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 67:4227–4235.
  • Courjal, F., M. Cuny, J. Simony-Lafontaine, G. Louason, P. Speiser, R. Zeillinger, C. Rodriguez, and C. Theillet. 1997. Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 57:4360–4367.
  • Croft, D. R., and M. F. Olson. 2006. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol. Cell. Biol. 26:4612–4627.
  • Daly, R. J. 2004. Cortactin signalling and dynamic actin networks. Biochem. J. 382:13–25.
  • Edlund, S., M. Landstrom, C. H. Heldin, and P. Aspenstrom. 2002. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 13:902–914.
  • Gibcus, J. H., M. F. Mastik, L. Menkema, G. H. de Bock, P. M. Kluin, E. Schuuring, and J. E. van der Wal. 2008. Cortactin expression predicts poor survival in laryngeal carcinoma. Br. J. Cancer 98:950–955.
  • Gupton, S. L., K. Eisenmann, A. S. Alberts, and C. M. Waterman-Storer. 2007. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120:3475–3487.
  • Hofman, P., C. Butori, K. Havet, V. Hofman, E. Selva, N. Guevara, J. Santini, and E. Van Obberghen-Schilling. 2008. Prognostic significance of cortactin levels in head and neck squamous cell carcinoma: comparison with epidermal growth factor receptor status. Br. J. Cancer. 98:956–964.
  • Huang, C., J. Liu, C. C. Haudenschild, and X. Zhan. 1998. The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J. Biol. Chem. 273:25770–25776.
  • Hui, R., D. H. Campbell, C. S. Lee, K. McCaul, D. J. Horsfall, E. A. Musgrove, R. J. Daly, R. Seshadri, and R. L. Sutherland. 1997. EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene 15:1617–1623.
  • Kamura, T., T. Hara, S. Kotoshiba, M. Yada, N. Ishida, H. Imaki, S. Hatakeyama, K. Nakayama, and K. I. Nakayama. 2003. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 100:10231–10236.
  • Kamura, T., T. Hara, M. Matsumoto, N. Ishida, F. Okumura, S. Hatakeyama, M. Yoshida, K. Nakayama, and K. I. Nakayama. 2004. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat. Cell Biol. 6:1229–1235.
  • Kim, M. S., S. L. Li, C. N. Bertolami, H. M. Cherrick, and N. H. Park. 1993. State of p53, Rb and DCC tumor suppressor genes in human oral cancer cell lines. Anticancer Res. 13:1405–1413.
  • Kitagawa, M., H. Higashi, H. K. Jung, I. Suzuki-Takahashi, M. Ikeda, K. Tamai, J. Kato, K. Segawa, E. Yoshida, S. Nishimura, and Y. Taya. 1996. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15:7060–7069.
  • LaBaer, J., M. D. Garrett, L. F. Stevenson, J. M. Slingerland, C. Sandhu, H. S. Chou, A. Fattaey, and E. Harlow. 1997. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11:847–862.
  • Lai, F. P., M. Szczodrak, J. M. Oelkers, M. Ladwein, F. Acconcia, S. Benesch, S. Auinger, J. Faix, J. V. Small, S. Polo, T. E. Stradal, and K. Rottner. 2009. Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol. Biol. Cell 20:3209–3223.
  • Lai, J. M., S. Wu, D. Y. Huang, and Z. F. Chang. 2002. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21Cip1/Waf1 in phorbol 12-myristate-13-acetate-induced apoptotic cells. Mol. Cell. Biol. 22:7581–7592.
  • Liu, H. S., H. H. Lu, M. T. Lui, E. H. Yu, W. Shen, Y. P. Chen, K. W. Chang, and H. F. Tu. 2009. Detection of copy number amplification of cyclin D1 (CCND1) and cortactin (CTTN) in oral carcinoma and oral brushed samples from areca chewers. Oral Oncol. 45:1032–1036.
  • Luo, C., H. Pan, M. Mines, K. Watson, J. Zhang, and G. H. Fan. 2006. CXCL12 induces tyrosine phosphorylation of cortactin, which plays a role in CXC chemokine receptor 4-mediated extracellular signal-regulated kinase activation and chemotaxis. J. Biol. Chem. 281:30081–30093.
  • Luo, M. L., X. M. Shen, Y. Zhang, F. Wei, X. Xu, Y. Cai, X. Zhang, Y. T. Sun, Q. M. Zhan, M. Wu, and M. R. Wang. 2006. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res. 66:11690–11699.
  • Mammoto, A., S. Huang, K. Moore, P. Oh, and D. E. Ingber. 2004. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279:26323–26330.
  • Musgrove, E. A., L. J. Hunter, C. S. Lee, A. Swarbrick, R. Hui, and R. L. Sutherland. 2001. Cyclin D1 overexpression induces progestin resistance in T-47D breast cancer cells despite p27Kip1 association with cyclin E-Cdk2. J. Biol. Chem. 276:47675–47683.
  • Olson, M. F., H. F. Paterson, and C. J. Marshall. 1998. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394:295–299.
  • Ormandy, C. J., E. A. Musgrove, R. Hui, R. J. Daly, and R. L. Sutherland. 2003. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res. Treat. 78:323–335.
  • Patel, A. S., G. L. Schechter, W. J. Wasilenko, and K. D. Somers. 1998. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16:3227–3232.
  • Pateras, I. S., K. Apostolopoulou, K. Niforou, A. Kotsinas, and V. G. Gorgoulis. 2009. p57KIP2: “Kip”ing the cell under control. Mol. Cancer Res. 7:1902–1919.
  • Paulsen, R. D., and K. A. Cimprich. 2007. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.) 6:953–966.
  • Rodrigo, J. P., D. Garcia-Carracedo, L. A. Garcia, S. Menendez, E. Allonca, M. V. Gonzalez, M. F. Fresno, C. Suarez, and J. M. Garcia-Pedrero. 2009. Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J. Pathol. 217:516–523.
  • Rodrigo, J. P., L. A. Garcia, S. Ramos, P. S. Lazo, and C. Suarez. 2000. EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin. Cancer Res. 6:3177–3182.
  • Rothschild, B. L., A. H. Shim, A. G. Ammer, L. C. Kelley, K. B. Irby, J. A. Head, L. Chen, M. Varella-Garcia, P. G. Sacks, B. Frederick, D. Raben, and S. A. Weed. 2006. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res. 66:8017–8025.
  • Sahai, E., T. Ishizaki, S. Narumiya, and R. Treisman. 1999. Transformation mediated by RhoA requires activity of ROCK kinases. Curr. Biol. 9:136–145.
  • Sahai, E., M. F. Olson, and C. J. Marshall. 2001. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20:755–766.
  • Schuuring, E. 1995. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene 159:83–96.
  • Shang, X., Y. T. Zhou, and B. C. Low. 2003. Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1. J. Biol. Chem. 278:45903–45914.
  • Sutterluty, H., E. Chatelain, A. Marti, C. Wirbelauer, M. Senften, U. Muller, and W. Krek. 1999. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat. Cell Biol. 1:207–214.
  • Swarbrick, A., C. S. Lee, R. L. Sutherland, and E. A. Musgrove. 2000. Cooperation of p27Kip1 and p18INK4c in progestin-mediated cell cycle arrest in T-47D breast cancer cells. Mol. Cell. Biol. 20:2581–2591.
  • Tehrani, S., N. Tomasevic, S. Weed, R. Sakowicz, and J. A. Cooper. 2007. Src phosphorylation of cortactin enhances actin assembly. Proc. Natl. Acad. Sci. U. S. A. 104:11933–11938.
  • Timpson, P., D. K. Lynch, D. Schramek, F. Walker, and R. J. Daly. 2005. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res. 65:3273–3280.
  • Timpson, P., A. S. Wilson, G. M. Lehrbach, R. L. Sutherland, E. A. Musgrove, and R. J. Daly. 2007. Aberrant expression of cortactin in head and neck squamous cell carcinoma cells is associated with enhanced cell proliferation and resistance to the epidermal growth factor receptor inhibitor gefitinib. Cancer Res. 67:9304–9314.
  • Tsvetkov, L. M., K. H. Yeh, S. J. Lee, H. Sun, and H. Zhang. 1999. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9:661–664.
  • Vidal, C., B. Geny, J. Melle, M. Jandrot-Perrus, and M. Fontenay-Roupie. 2002. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 100:4462–4469.
  • Walker, I. G., R. W. Yatscoff, and R. Sridhar. 1977. Hydroxyurea: induction of breaks in template strands of replicating DNA. Biochem. Biophys. Res. Commun. 77:403–408.
  • Wang, W., L. Chen, Y. Ding, J. Jin, and K. Liao. 2008. Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin. J. Cell Sci. 121:1334–1343.
  • Weaver, A. M. 2008. Cortactin in tumor invasiveness. Cancer Lett. 265:157–166.
  • Weber, J. D., W. Hu, S. C. Jefcoat, Jr., D. M. Raben, and J. J. Baldassare. 1997. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J. Biol. Chem. 272:32966–32971.
  • Welsh, C. F. 2004. Rho GTPases as key transducers of proliferative signals in g1 cell cycle regulation. Breast Cancer Res. Treat 84:33–42.
  • Zhang, S., Q. Tang, F. Xu, Y. Xue, Z. Zhen, Y. Deng, M. Liu, J. Chen, S. Liu, M. Qiu, Z. Liao, Z. Li, D. Luo, F. Shi, Y. Zheng, and F. Bi. 2009. RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol. Cancer Res. 7:570–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.