78
Views
17
CrossRef citations to date
0
Altmetric
Research Article

SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis

, , , , , , , , & show all
Article: e00254-16 | Received 03 May 2016, Accepted 20 Oct 2016, Published online: 17 Mar 2023

REFERENCES

  • Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. 2014. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 5:3351. https://doi.org/10.1038/ncomms4351.
  • Lee EW, Kim JH, Ahn YH, Seo J, Ko A, Jeong M, Kim SJ, Ro JY, Park KM, Lee HW, Park EJ, Chun KH, Song J. 2012. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat Commun 3:978. https://doi.org/10.1038/ncomms1981.
  • Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. 1998. Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143:1353–1360. https://doi.org/10.1083/jcb.143.5.1353.
  • Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. 2000. Necrotic death pathway in Fas receptor signaling. J Cell Biol 151:1247–1256. https://doi.org/10.1083/jcb.151.6.1247.
  • Juo P, Kuo CJ, Yuan J, Blenis J. 1998. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8:1001–1008. https://doi.org/10.1016/S0960-9822(07)00420-4.
  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. 2000. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535. https://doi.org/10.1038/75007.
  • Lee HJ, Pyo JO, Oh Y, Kim HJ, Hong SH, Jeon YJ, Kim H, Cho DH, Woo HN, Song S, Nam JH, Kim HJ, Kim KS, Jung YK. 2007. AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9:1303–1310. https://doi.org/10.1038/ncb1650.
  • Lamy L, Ngo VN, Emre NC, Shaffer AL, III, Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, Staudt LM. 2013. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23:435–449. https://doi.org/10.1016/j.ccr.2013.02.017.
  • Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L. 2000. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 19:4451–4460. https://doi.org/10.1038/sj.onc.1203812.
  • Harada K, Toyooka S, Shivapurkar N, Maitra A, Reddy JL, Matta H, Miyajima K, Timmons CF, Tomlinson GE, Mastrangelo D, Hay RJ, Chaudhary PM, Gazdar AF. 2002. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res 62:5897–5901.
  • Park WS, Lee JH, Shin MS, Park JY, Kim HS, Lee JH, Kim YS, Lee SN, Xiao W, Park CH, Lee SH, Yoo NJ, Lee JY. 2002. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21:2919–2925. https://doi.org/10.1038/sj.onc.1205394.
  • Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN, Lee JH, Park JY, Jang JJ, Kim CW, Kim SH, Lee JY, Yoo NJ, Lee SH. 2002. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99:4094–4099. https://doi.org/10.1182/blood.V99.11.4094.
  • Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ. 1999. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98:47–58. https://doi.org/10.1016/S0092-8674(00)80605-4.
  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. 2012. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548. https://doi.org/10.1016/j.cell.2012.05.014.
  • Wang Z, Jiang H, Chen S, Du F, Wang X. 2012. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243. https://doi.org/10.1016/j.cell.2011.11.030.
  • Gustafsson AB, Gottlieb RA. 2008. Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343.
  • Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH. 2011. Abnormal mitochondrial dynamics, mitochondrial loss and mutant Huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet 20:1438–1455. https://doi.org/10.1093/hmg/ddr024.
  • Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. 2011. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26. https://doi.org/10.1038/nsmb.1949.
  • Otera H, Ishihara N, Mihara K. 2013. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833:1256–1268. https://doi.org/10.1016/j.bbamcr.2013.02.002.
  • Liu T, Roh SE, Woo JA, Ryu H, Kang DE. 2013. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis 4:e476. https://doi.org/10.1038/cddis.2012.203.
  • Iglewski M, Hill JA, Lavandero S, Rothermel BA. 2010. Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12:418–425. https://doi.org/10.1007/s11906-010-0147-x.
  • Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW, II, O'Rourke B, Kitsis RN. 2012. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci U S A 109:6566–6571. https://doi.org/10.1073/pnas.1201608109.
  • Johnson ES. 2004. Protein modification by SUMO. Annu Rev Biochem 73:355–382. https://doi.org/10.1146/annurev.biochem.73.011303.074118.
  • Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A. 2006. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 22:783–794. https://doi.org/10.1016/j.molcel.2006.05.016.
  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. 2003. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576. https://doi.org/10.1016/S0092-8674(03)00895-X.
  • Besnault-Mascard L, Leprince C, Auffredou MT, Meunier B, Bourgeade MF, Camonis J, Lorenzo HK, Vazquez A. 2005. Caspase-8 sumoylation is associated with nuclear localization. Oncogene 24:3268–3273. https://doi.org/10.1038/sj.onc.1208448.
  • Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y. 2009. Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics 9:3409–3412. https://doi.org/10.1002/pmic.200800646.
  • Uchimura Y, Nakao M, Saitoh H. 2004. Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 564:85–90. https://doi.org/10.1016/S0014-5793(04)00321-7.
  • Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337.
  • Endo H, Kamada H, Nito C, Nishi T, Chan PH. 2006. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983. https://doi.org/10.1523/JNEUROSCI.0897-06.2006.
  • Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. 2008. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808. https://doi.org/10.1073/pnas.0808249105.
  • Choi WS, Lee EH, Chung CW, Jung YK, Jin BK, Kim SU, Oh TH, Saido TC, Oh YJ. 2001. Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77:1531–1541. https://doi.org/10.1046/j.1471-4159.2001.00368.x.
  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM. 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256. https://doi.org/10.1091/mbc.12.8.2245.
  • Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. 2003. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127. https://doi.org/10.1083/jcb.200212059.
  • Choi DW. 1995. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60. https://doi.org/10.1016/0166-2236(95)80018-W.
  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166. https://doi.org/10.1073/pnas.92.16.7162.
  • Kristian T, Siesjo BK. 1998. Calcium in ischemic cell death. Stroke 29:705–718. https://doi.org/10.1161/01.STR.29.3.705.
  • Shin HW, Takatsu H, Mukai H, Munekata E, Murakami K, Nakayama K. 1999. Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J Biol Chem 274:2780–2785. https://doi.org/10.1074/jbc.274.5.2780.
  • Sampson DA, Wang M, Matunis MJ. 2001. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276:21664–21669. https://doi.org/10.1074/jbc.M100006200.
  • Gareau JR, Lima CD. 2010. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871. https://doi.org/10.1038/nrm3011.
  • Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z. 2000. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101:753–762. https://doi.org/10.1016/S0092-8674(00)80887-9.
  • Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A, Drynda A, Mendoza H, Gay RE, Hay RT, Ink B, Gay S, Pap T. 2007. Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci U S A 104:5073–5078. https://doi.org/10.1073/pnas.0608773104.
  • Babic I, Cherry E, Fujita DJ. 2006. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 25:4955–4964. https://doi.org/10.1038/sj.onc.1209504.
  • Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, Plotkowski MC, Sansonetti PJ, Molkentin JD, Philpott DJ, Girardin SE. 2009. Shigella induces mitochondrial dysfunction and cell death in nonmyeloid cells. Cell Host Microbe 5:123–136. https://doi.org/10.1016/j.chom.2008.12.011.
  • Guo X, Sesaki H, Qi X. 2014. Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J 461:137–146. https://doi.org/10.1042/BJ20131438.
  • Hamahata K, Adachi S, Matsubara H, Okada M, Imai T, Watanabe K, Toyokuni SY, Ueno M, Wakabayashi S, Katanosaka Y, Akiba S, Kubota M, Nakahata T. 2005. Mitochondrial dysfunction is related to necrosis-like programmed cell death induced by A23187 in CEM cells. Eur J Pharmacol 516:187–196. https://doi.org/10.1016/j.ejphar.2005.04.018.
  • Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, Tochon-Danguy HJ, Sachinidis JI, Donnan GA. 2004. Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain 127:1427–1436. https://doi.org/10.1093/brain/awh162.
  • Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I. 2011. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol Neurodegener 6:81. https://doi.org/10.1186/1750-1326-6-81.
  • Orabi AI, Shah AU, Ahmad MU, Choo-Wing R, Parness J, Jain D, Bhandari V, Husain SZ. 2010. Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice. Am J Physiol Gastrointest Liver Physiol 299:G196–G204. https://doi.org/10.1152/ajpgi.00498.2009.
  • Yu G, Zucchi R, Ronca-Testoni S, Ronca G. 2000. Protection of ischemic rat heart by dantrolene, an antagonist of the sarcoplasmic reticulum calcium release channel. Basic Res Cardiol 95:137–143. https://doi.org/10.1007/s003950050175.
  • Clinton RW, Francy CA, Ramachandran R, Qi X, Mears JA. 2016. Dynamin-related protein 1 oligomerization in solution impairs functional interactions with membrane-anchored mitochondrial fission factor. J Biol Chem 291:478–492. https://doi.org/10.1074/jbc.M115.680025.
  • Strack S, Cribbs JT. 2012. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J Biol Chem 287:10990–11001. https://doi.org/10.1074/jbc.M112.342105.
  • Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. 2001. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci U S A 98:13884–13888. https://doi.org/10.1073/pnas.241358198.
  • Cho B, Cho HM, Kim HJ, Jeong J, Park SK, Hwang EM, Park JY, Kim WR, Kim H, Sun W. 2014. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp Mol Med 46:e105. https://doi.org/10.1038/emm.2014.36.
  • Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ, Lahti JM, Cheresh DA. 2006. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439:95–99. https://doi.org/10.1038/nature04323.
  • Giampietri C, Petrungaro S, Coluccia P, D'Alessio A, Starace D, Riccioli A, Padula F, Srinivasula SM, Alnemri E, Palombi F, Filippini A, Ziparo E, De Cesaris P. 2003. FLIP is expressed in mouse testis and protects germ cells from apoptosis. Cell Death Differ 10:175–184. https://doi.org/10.1038/sj.cdd.4401137.
  • Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613. https://doi.org/10.1074/jbc.273.49.32608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.