2
Views
14
CrossRef citations to date
0
Altmetric
Article

Mechanistic Studies of the Mitotic Activation of Mos

&
Pages 5300-5309 | Received 13 Feb 2006, Accepted 03 May 2006, Published online: 27 Mar 2023

REFERENCES

  • Abrieu, A., D. Fisher, M. N. Simon, M. Doree, and A. Picard. 1997. MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle. EMBO J. 16:6407–6413.
  • Andrésson, T., and J. V. Ruderman. 1998. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J. 17:5627–5637.
  • Bitangcol, J. C., A. S. Chau, E. Stadnick, M. J. Lohka, B. Dicken, and E. K. Shibuya. 1998. Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts. Mol. Biol. Cell 9:451–467.
  • Castro, A., M. Peter, L. Magnaghi-Jaulin, S. Vigneron, S. Galas, T. Lorca, and J. C. Labbe. 2001. Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol. Biol. Cell 12:2660–2671.
  • Chen, M., and J. A. Cooper. 1995. Ser-3 is important for regulating Mos interaction with and stimulation of mitogen-activated protein kinase kinase. Mol. Cell. Biol. 15:4727–4734.
  • Chen, M., and J. A. Cooper. 1997. The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc. Natl. Acad. Sci. USA 94:9136–9140.
  • Chen, M., D. Li, E. G. Krebs, and J. A. Cooper. 1997. The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol. Cell. Biol. 17:1904–1912.
  • Colledge, W. H., M. B. Carlton, G. B. Udy, and M. J. Evans. 1994. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370:65–68.
  • Connell-Crowley, L., M. J. Solomon, N. Wei, and J. W. Harper. 1993. Phosphorylation independent activation of human cyclin-dependent kinase 2 by cyclin A in vitro. Mol. Biol. Cell 4:79–92.
  • Dunphy, W. G., and J. W. Newport. 1989. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell 58:181–191.
  • Dupre, A., C. Jessus, R. Ozon, and O. Haccard. 2002. Mos is not required for the initiation of meiotic maturation in Xenopus oocytes. EMBO J. 21:4026–4036.
  • Ferrell, J. E., Jr. 1999. Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21:833–842.
  • Freeman, R. S., A. N. Meyer, J. Li, and D. J. Donoghue. 1992. Phosphorylation of conserved serine residues does not regulate the ability of mosxe protein kinase to induce oocyte maturation or function as cytostatic factor. J. Cell Biol. 116:725–735.
  • Guadagno, T. M., and J. E. Ferrell, Jr. 1998. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282:1312–1315.
  • Hagopian, J. C., M. P. Kirtley, L. M. Stevenson, R. M. Gergis, A. A. Russo, N. P. Pavletich, S. M. Parsons, and J. Lew. 2001. Kinetic basis for activation of Cdk2/CyclinA by phosphorylation. J. Biol. Chem. 276:275–280.
  • Hanks, S. K., and A. M. Quinn. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200:38–62.
  • Harrison, S. C. 2003. Variation on an Src-like theme. Cell 112:737–740.
  • Hashimoto, N., N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata, M. Yokoyama, K. Okazaki, M. Nagayoshi, N. Takeda, Y. Ikawa, et al. 1994. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370:68–71.
  • Jeffrey, P. D., A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massague, and N. P. Pavletich. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–320.
  • Kajiura-Kobayashi, H., N. Yoshida, N. Sagata, M. Yamashita, and Y. Nagahama. 2000. The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Dev. Genes Evol. 210:416–425.
  • Lieberman, S. L., and J. V. Ruderman. 2004. CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos. Dev. Biol. 268:271–279.
  • Matten, W. T., T. D. Copeland, N. G. Ahn, and G. F. Vande Woude. 1996. Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev. Biol. 179:485–492.
  • Mendez, R., L. E. Hake, T. Andresson, L. E. Littlepage, J. V. Ruderman, and J. D. Richter. 2000. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404:302–307.
  • Minshull, J., H. Sun, N. K. Tonks, and A. W. Murray. 1994. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79:475–486.
  • Murray, A. W. 1991. Cell cycle extracts. Methods Cell Biol. 36:581–605.
  • Nebreda, A. R., and I. Ferby. 2000. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12:666–675.
  • Nishizawa, M., N. Furuno, K. Okazaki, H. Tanaka, Y. Ogawa, and N. Sagata. 1993. Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J. 12:4021–4027.
  • Nishizawa, M., K. Okazaki, N. Furuno, N. Watanabe, and N. Sagata. 1992. The ‘second-codon rule’ and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J. 11:2433–2446.
  • Obenauer, J. C., L. C. Cantley, and M. B. Yaffe. 2003. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31:3635–3641.
  • Pascreau, G., J. G. Delcros, J. Y. Cremet, C. Prigent, and Y. Arlot-Bonnemains. 2005. Phosphorylation of maskin by Aurora-A participates in the control of sequential protein synthesis during Xenopus laevis oocyte maturation. J. Biol. Chem. 280:13415–13423.
  • Puls, A., T. Proikas-Cezanne, B. Marquardt, F. Propst, and S. Stabel. 1995. Kinase activities of c-Mos and v-Mos proteins: a single amino acid exchange is responsible for constitutive activation of the 124 v-Mos kinase. Oncogene 10:623–630.
  • Roy, L. M., O. Haccard, T. Izumi, B. G. Lattes, A. L. Lewellyn, and J. L. Maller, J. L. 1996. Mos proto-oncogene function during oocyte maturation in Xenopus. Oncogene 12:2203–2211.
  • Russo, A. A., P. D. Jeffrey, and N. P. Pavletich. 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3:696–700.
  • Sagata, N., I. Daar, M. Oskarsson, S. D. Showalter, and G. F. Vande Woude. 1989. The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science 245:643–646.
  • Sagata, N., M. Oskarsson, T. Copeland, J. Brumbaugh, and G. F. Vande Woude. 1988. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335:519–525.
  • Sagata, N., N. Watanabe, G. F. Vande Woude, and Y. Ikawa. 1989. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342:512–518.
  • Sheng, J., A. Kumagai, W. G. Dunphy, and A. Varshavsky. 2002. Dissection of c-MOS degron. EMBO J. 21:6061–6071.
  • Sicheri, F., and J. Kuriyan. 1997. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7:777–785.
  • Smythe, C., and J. W. Newport. 1991. Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Methods Cell Biol. 35:449–468.
  • Verlhac, M. H., J. Z. Kubiak, M. Weber, G. Geraud, W. H. Colledge, M. J. Evans, and B. Maro. 1996. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122:815–822.
  • Walter, S. A., T. M. Guadagno, and J. E. Ferrell, Jr. 1997. Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 MAP kinase. Mol. Biol. Cell 8:2157–2169.
  • Watanabe, N., T. Hunt, Y. Ikawa, and N. Sagata. 1991. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature 352:247–248.
  • Xu, W., A. Doshi, M. Lei, M. J. Eck, and S. C. Harrison. 1999. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3:629–638.
  • Yue, J., and J. E. Ferrell, Jr. 2004. Mos mediates the mitotic activation of p42 MAPK in Xenopus egg extracts. Curr. Biol. 14:1581–1586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.