26
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1α To Enhance Nerve Growth Factor Function

ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Article: e00277-17 | Received 19 May 2017, Accepted 06 Dec 2017, Published online: 03 Mar 2023

REFERENCES

  • Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. 2003. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144. https://doi.org/10.1126/science.1090100.
  • Lipscombe D. 2005. Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 15:358–363. https://doi.org/10.1016/j.conb.2005.04.002.
  • Maures TJ, Kurzer JH, Carter-Su C. 2007. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 18:38–45. https://doi.org/10.1016/j.tem.2006.11.007.
  • Wang J, Riedel H. 1998. Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 273:3136–3139. https://doi.org/10.1074/jbc.273.6.3136.
  • Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C. 1997. Identification of SH2-Bβ as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17:6633–6644. https://doi.org/10.1128/MCB.17.11.6633.
  • Rui L, Carter-Su C. 1998. Platelet-derived growth factor (PDGF) stimulates the association of SH2-Bβ with PDGF receptor and phosphorylation of SH2-Bβ. J Biol Chem 273:21239–21245. https://doi.org/10.1074/jbc.273.33.21239.
  • Rui L, Herrington J, Carter-Su C. 1999. SH2-B is required for nerve growth factor-induced neuronal differentiation. J Biol Chem 274:10590–10594. https://doi.org/10.1074/jbc.274.15.10590.
  • Donatello S, Fiorino A, Degl'Innocenti D, Alberti L, Miranda C, Gorla L, Bongarzone I, Rizzetti MG, Pierotti MA, Borrello MG. 2007. SH2B1β adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene 26:6546–6559. https://doi.org/10.1038/sj.onc.1210480.
  • Qian X, Riccio A, Zhang Y, Ginty DD. 1998. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21:1017–1029. https://doi.org/10.1016/S0896-6273(00)80620-0.
  • Yousaf N, Deng Y, Kang Y, Riedel H. 2001. Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. J Biol Chem 276:40940–40948. https://doi.org/10.1074/jbc.M104191200.
  • Rui L. 2014. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J Diabetes 5:511–526. https://doi.org/10.4239/wjd.v5.i4.511.
  • Nelms K, O'Neill TJ, Li S, Hubbard SR, Gustafson TA, Paul WE. 1999. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain. Mamm Genome 10:1160–1167. https://doi.org/10.1007/s003359901183.
  • Doche MD, Bochukova EG, Su HW, Pearce L, Keogh JM, Henning E, Cline JM, Dale A, Cheetham T, Barroso I, Argetsinger LS, O'Rahilly SO, Rui L, Carter-Su C, Farooqi IS. 2012. SH2B1 mutations are associated with maladaptive behavior and obesity. J Clin Invest 122:4732–4736. https://doi.org/10.1172/JCI62696.
  • Zhang M, Deng Y, Riedel H. 2008. PSM/SH2B1 splice variants: critical role in src catalytic activation and the resulting STAT3s-mediated mitogenic response. J Cell Biochem 104:105–118. https://doi.org/10.1002/jcb.21606.
  • Zhang M, Deng Y, Tandon R, Bai C, Riedel H. 2008. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses. J Cell Biochem 103:162–181. https://doi.org/10.1002/jcb.21397.
  • Duan C, Yang H, White MF, Rui L. 2004. Disruption of SH2-B causes age-dependent insulin resistance and glucose intolerance. Mol Cell Biol 24:7435–7443. https://doi.org/10.1128/MCB.24.17.7435-7443.2004.
  • Ren D, Li M, Duan C, Rui L. 2005. Identification of SH2-B as a key regulator of leptin sensitivity, energy balance and body weight in mice. Cell Metab 2:95–104. https://doi.org/10.1016/j.cmet.2005.07.004.
  • Wu G, Liu Y, Huang H, Tang Y, Liu W, Mei Y, Wan N, Liu X, Huang C. 2015. SH2B1 is critical for the regulation of cardiac remodelling in response to pressure overload. Cardiovasc Res 107:203–215. https://doi.org/10.1093/cvr/cvv170.
  • Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA, Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, Collins FS, Connell JM, Cooper C, Smith GD, Dennison EM, Deodhar P, Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C, Gillson CJ, et al.. 2009. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34. https://doi.org/10.1038/ng.287.
  • Speakman JR. 2013. Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum Heredity 75:57–79. https://doi.org/10.1159/000353585.
  • Bochukova EG, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K, Saeed S, Hamilton-Shield J, Clayton-Smith J, O'Rahilly S, Hurles ME, Farooqi IS. 2010. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463:666–670. https://doi.org/10.1038/nature08689.
  • Perrone L, Marzuillo P, Grandone A, del Giudice EM. 2010. Chromosome 16p11.2 deletions: another piece in the genetic puzzle of childhood obesity. Ital J Pediatr 36:43–45. https://doi.org/10.1186/1824-7288-36-43.
  • Pearce LR, Joe R, Doche MD, Su HW, Keogh JM, Henning E, Argetsinger LS, Bochukova EG, Cline JM, Garg S, Saeed S, Shoelson S, O'Rahilly S, Barroso I, Rui L, Farooqi IS, Carter-Su C. 2014. Functional characterisation of obesity-associated variants involving the alpha and beta isoforms of human SH2B1. Endocrinology 9:3219–3226. https://doi.org/10.1210/en.2014-1264.
  • Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L. 2007. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest 117:397–406. https://doi.org/10.1172/JCI29417.
  • Shih CH, Chen CJ, Chen L. 2013. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth. PLoS One 8:e79619. https://doi.org/10.1371/journal.pone.0079619.
  • Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, Chen L. 2009. SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal 21:1060–1072. https://doi.org/10.1016/j.cellsig.2009.02.009.
  • Li Z, Zhou Y, Carter-Su C, Myers MG, Jr, Rui L. 2007. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. Mol Endocrinol 21:2270–2281. https://doi.org/10.1210/me.2007-0111.
  • Riedel H, Wang J, Hansen H, Yousaf N. 1997. PSM, an insulin-dependent, Pro-rich, PH, SH2 domain containing partner of the insulin receptor. J Biochem 122:1105–1113. https://doi.org/10.1093/oxfordjournals.jbchem.a021868.
  • Kong M, Wang CS, Donoghue DJ. 2002. Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. J Biol Chem 277:15962–15970. https://doi.org/10.1074/jbc.M102777200.
  • Greene LA, Tischler AS. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428. https://doi.org/10.1073/pnas.73.7.2424.
  • Chen L, Maures TJ, Jin H, Huo JS, Rabbani SA, Schwartz J, Carter-Su C. 2008. SH2B1β (SH2-Bβ) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding uPAR and MMP3/10. Mol Endocrinol 22:454–476. https://doi.org/10.1210/me.2007-0384.
  • Marek L, Levresse V, Amura C, Zentrich E, Van Putten V, Nemenoff RA, Heasley LE. 2004. Multiple signaling conduits regulate global differentiation-specific gene expression in PC12 cells. J Cell Physiol 201:459–469. https://doi.org/10.1002/jcp.20087.
  • Maures TJ, Chen L, Carter-Su C. 2009. Nucleocytoplasmic shuttling of the adapter protein SH2B1β (SH2-Bβ) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 23:1077–1091. https://doi.org/10.1210/me.2009-0011.
  • Maures TJ, Su H-W, Argetsinger LS, Grinstein S, Carter-Su C. 2011. Phosphorylation controls a dual function polybasic NLS in the adapter protein SH2B1β to regulate its cellular function and distribution between the plasma membrane, cytoplasm and nucleus. J Cell Sci 124:1542–1552. https://doi.org/10.1242/jcs.078949.
  • Chen L, Carter-Su C. 2004. Adapter protein SH2-Bβ undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol 24:3633–3647. https://doi.org/10.1128/MCB.24.9.3633-3647.2004.
  • Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC. 1997. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77. https://doi.org/10.1126/science.275.5296.73.
  • Fanning AS, Anderson JM. 1999. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772. https://doi.org/10.1172/JCI6509.
  • Farias-Eisner R, Vician L, Silver A, Reddy S, Rabbani SA, Herschman HR. 2000. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J Neurosci 20:230–239.
  • Farias-Eisner R, Vician L, Reddy S, Basconcillo R, Rabbani SA, Wu YY, Bradshaw RA, Herschman HR. 2001. Expression of the urokinase plasminogen activator receptor is transiently required during “priming” of PC12 cells in nerve growth factor-directed cellular differentiation. J Neurosci Res 63:341–346. https://doi.org/10.1002/1097-4547(20010215)63:4<341::AID-JNR1028>3.0.CO;2-P.
  • Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. 2003. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23:622–631.
  • McFarlane S. 2003. Metalloproteases: carving out a role in axon guidance. Neuron 37:559–562. https://doi.org/10.1016/S0896-6273(03)00089-8.
  • Dijkmans TF, van Hooijdonk LW, Schouten TG, Kamphorst JT, Fitzsimons CP, Vreugdenhil E. 2009. Identification of new nerve growth factor-responsive immediate-early genes. Brain Res 1249:19–33. https://doi.org/10.1016/j.brainres.2008.10.050.
  • Kaplan DR, Miller FD. 1997. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221. https://doi.org/10.1016/S0955-0674(97)80065-8.
  • Wang X, Chen L, Maures TJ, Herrington J, Carter-Su C. 2004. SH2-B is a positive regulator of nerve growth factor-mediated activation of the Akt/forkhead pathway in PC12 cells. J Biol Chem 279:133–141. https://doi.org/10.1074/jbc.M310040200.
  • Wang TC, Chiu H, Chang YJ, Hsu TY, Chiu IM, Chen L. 2011. The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons. PLoS One 6:e26433. https://doi.org/10.1371/journal.pone.0026433.
  • Rui L, Herrington J, Carter-Su C. 1999. SH2-B, a membrane-associated adapter, is phosphorylated on multiple serines/threonines in response to nerve growth factor by kinases within the MEK/ERK cascade. J Biol Chem 274:26485–26492. https://doi.org/10.1074/jbc.274.37.26485.
  • Qian X, Ginty DD. 2001. SH2-B and APS are multimeric adapters that augment TrkA signaling. Mol Cell Biol 21:1613–1620. https://doi.org/10.1128/MCB.21.5.1613-1620.2001.
  • Kaplan DR, Martin-Zanes D, Parada LF. 1991. Tyrosine phosphorylation and tyrosine kinase activity of the Trk protooncogene product induced by NGF. Nature 350:158–160. https://doi.org/10.1038/350158a0.
  • Huang EJ, Reichardt LF. 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629.
  • Meakin SO. 2000. Nerve growth factor receptors and mechanisms of intracellular signal transduction. Recent Res Dev Neurochem 3:75–91.
  • Su HW, Lanning NJ, Morris DL, Argetsinger LS, Lumeng CN, Carter-Su C. 2013. Phosphorylation of the adaptor protein SH2B1β regulates its ability to enhance growth hormone-dependent macrophage motility. J Cell Sci 126:1733–1743. https://doi.org/10.1242/jcs.113050.
  • Hu J, Hubbard SR. 2005. Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem 280:18943–18949. https://doi.org/10.1074/jbc.M414157200.
  • Moodie SA, Alleman-Sposeto J, Gustafson TA. 1999. Identification of the APS protein as a novel insulin receptor substrate. J Biol Chem 274:11186–11193. https://doi.org/10.1074/jbc.274.16.11186.
  • Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B. 2004. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4:1551–1561. https://doi.org/10.1002/pmic.200300772.
  • Lee HJ, Zheng JJ. 2010. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8. https://doi.org/10.1186/1478-811X-8-8.
  • Wakioka T, Sasaki A, Mitsui K, Yokouchi M, Inoue A, Komiya S, Yoshimura A. 1999. APS, an adaptor protein containing pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 13:760–767. https://doi.org/10.1038/sj.leu.2401397.
  • Liu J, Kimura A, Baumann CA, Saltiel AR. 2002. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 22:3599–3609. https://doi.org/10.1128/MCB.22.11.3599-3609.2002.
  • Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI. 1995. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 92:11618–11622. https://doi.org/10.1073/pnas.92.25.11618.
  • O'Brien KB, Argetsinger LS, Diakonova M, Carter-Su C. 2003. YXXL motifs in SH2-Bb are phosphorylated by JAK2, JAK1, and platelet-derived growth factor receptor and are required for membrane ruffling. J Biol Chem 278:11970–11978. https://doi.org/10.1074/jbc.M210765200.
  • Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C. 2006. Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 26:6381–6394. https://doi.org/10.1128/MCB.00570-06.
  • Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA, Kaplan DR. 1994. Trk receptors use redundant signal transduction pathways involving SHC and PLC-γ 1 to mediate NGF responses. Neuron 12:691–705. https://doi.org/10.1016/0896-6273(94)90223-2.
  • Obermeier A, Bradshaw RA, Seedorf K, Choidas A, Schlessinger J, Ullrich A. 1994. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J 13:1585–1590.
  • Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM. 1999. The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem 274:9861–9870.
  • Kao S, Jaiswal RK, Kolch W, Landreth GE. 2001. Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276:18169–18177. https://doi.org/10.1074/jbc.M008870200.
  • Zhang K, Fishel Ben Kenan R, Osakada Y, Xu W, Sinit RS, Chen L, Zhao X, Chen JY, Cui B, Wu C. 2013. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J Neurosci 33:7451–7462. https://doi.org/10.1523/JNEUROSCI.4322-12.2013.
  • Chen C, Okayama H. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752. https://doi.org/10.1128/MCB.7.8.2745.
  • Walder RY, Wattiez A-S, White SR, Marquez de Prado B, Hamity MV, Hammond DL. 2014. Validation of four reference genes for quantitative mRNA expression studies in a rat model of inflammatory injury. Mol Pain 10:55. https://doi.org/10.1186/1744-8069-10-55.
  • Lee Y-W, Stachowiak EK, Birkaya B, Terranova C, Capacchietti M, Claus P, Aletta JM, Stachowiak MK. 2013. NGF-induced cell differentiation and gene activation is mediated by integrative nuclear FGFR1 signaling (INFS). PLoS One 8:e68931. https://doi.org/10.1371/journal.pone.0068931.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.