49
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Proteomics Screen Identifies Class I Rab11 Family Interacting Proteins as Key Regulators of Cytokinesis

, , , , , , ORCID Icon & ORCID Icon show all
Article: e00278-16 | Received 11 May 2016, Accepted 11 Nov 2016, Published online: 17 Mar 2023

REFERENCES

  • Zhao J, Meyerkord CL, Du Y, Khuri FR, Fu H. 2011. 14-3-3 proteins as potential therapeutic targets. Semin Cell Dev Biol 22:705–712. https://doi.org/10.1016/j.semcdb.2011.09.012.
  • Wang W, Shakes DC. 1996. Molecular evolution of the 14-3-3 protein family. J Mol Evol 43:384–398. https://doi.org/10.1007/BF02339012.
  • Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R. 1995. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376:191–194. https://doi.org/10.1038/376191a0.
  • Gardino AK, Yaffe MB. 2011. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22:688–695. https://doi.org/10.1016/j.semcdb.2011.09.008.
  • Obsil T, Obsilova V. 2011. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol 22:663–672. https://doi.org/10.1016/j.semcdb.2011.09.001.
  • Obsilova V, Kopecka M, Kosek D, Kacirova M, Kylarova S, Rezabkova L, Obsil T. 2014. Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiol Res 63(Suppl 1):S155–S164.
  • Reinhardt HC, Yaffe MB. 2013. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 14:563–580. https://doi.org/10.1038/nrm3640.
  • Zerial M, McBride H. 2001. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117. https://doi.org/10.1038/35052055.
  • Welz T, Wellbourne-Wood J, Kerkhoff E. 2014. Orchestration of cell surface proteins by Rab11. Trends Cell Biol 24:407–415. https://doi.org/10.1016/j.tcb.2014.02.004.
  • Horgan CP, McCaffrey MW. 2009. The dynamic Rab11-FIPs. Biochem Soc Trans 37:1032–1036. https://doi.org/10.1042/BST0371032.
  • Lapierre LA, Avant KM, Caldwell CM, Oztan A, Apodaca G, Knowles BC, Roland JT, Ducharme NA, Goldenring JR. 2012. Phosphorylation of Rab11-FIP2 regulates polarity in MDCK cells. Mol Biol Cell 23:2302–2318. https://doi.org/10.1091/mbc.E11-08-0681.
  • Ducharme NA, Hales CM, Lapierre LA, Ham AJ, Oztan A, Apodaca G, Goldenring JR. 2006. MARK2/EMK1/Par-1Balpha phosphorylation of Rab11-family interacting protein 2 is necessary for the timely establishment of polarity in Madin-Darby canine kidney cells. Mol Biol Cell 17:3625–3637. https://doi.org/10.1091/mbc.E05-08-0736.
  • Su T, Bryant DM, Luton F, Verges M, Ulrich SM, Hansen KC, Datta A, Eastburn DJ, Burlingame AL, Shokat KM, Mostov KE. 2010. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 12:1143–1153. https://doi.org/10.1038/ncb2118.
  • Li D, Mangan A, Cicchini L, Margolis B, Prekeris R. 2014. FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis. EMBO Rep 15:428–437. https://doi.org/10.1002/embr.201338128.
  • Li BX, Satoh AK, Ready DF. 2007. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 177:659–669. https://doi.org/10.1083/jcb.200610157.
  • Shaye DD, Casanova J, Llimargas M. 2008. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 10:964–970. https://doi.org/10.1038/ncb1756.
  • Schiel JA, Childs C, Prekeris R. 2013. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 23:319–327. https://doi.org/10.1016/j.tcb.2013.02.003.
  • Wilson GM, Fielding AB, Simon GC, Yu X, Andrews PD, Hames RS, Frey AM, Peden AA, Gould GW, Prekeris R. 2005. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol Biol Cell 16:849–860.
  • Cao J, Albertson R, Riggs B, Field CM, Sullivan W. 2008. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J Cell Biol 182:301–313. https://doi.org/10.1083/jcb.200712036.
  • Riggs B, Rothwell W, Mische S, Hickson GR, Matheson J, Hays TS, Gould GW, Sullivan W. 2003. Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11. J Cell Biol 163:143–154. https://doi.org/10.1083/jcb.200305115.
  • Mierzwa B, Gerlich DW. 2014. Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538. https://doi.org/10.1016/j.devcel.2014.11.006.
  • D'Avino PP, Giansanti MG, Petronczki M. 2015. Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 7:a015834. https://doi.org/10.1101/cshperspect.a015834.
  • Green RA, Paluch E, Oegema K. 2012. Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58. https://doi.org/10.1146/annurev-cellbio-101011-155718.
  • Wilker EW, van Vugt MA, Artim SA, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM, Yaffe MB. 2007. 14-3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 446:329–332. https://doi.org/10.1038/nature05584.
  • Yuce O, Piekny A, Glotzer M. 2005. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 170:571–582. https://doi.org/10.1083/jcb.200501097.
  • Zhao WM, Fang G. 2005. MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis. Proc Natl Acad Sci U S A 102:13158–13163. https://doi.org/10.1073/pnas.0504145102.
  • Mishima M, Kaitna S, Glotzer M. 2002. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2:41–54. https://doi.org/10.1016/S1534-5807(01)00110-1.
  • Douglas ME, Davies T, Joseph N, Mishima M. 2010. Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr Biol 20:927–933. https://doi.org/10.1016/j.cub.2010.03.055.
  • Zhang L, Wang H, Liu D, Liddington R, Fu H. 1997. Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. J Biol Chem 272:13717–13724. https://doi.org/10.1074/jbc.272.21.13717.
  • Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E, Fu H. 1999. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38:12499–12504. https://doi.org/10.1021/bi991353h.
  • Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC. 1998. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273:16305–16310. https://doi.org/10.1074/jbc.273.26.16305.
  • Madeira F, Tinti M, Murugesan G, Berrett E, Stafford M, Toth R, Cole C, MacKintosh C, Barton GJ. 2015. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 31:2276–2283. https://doi.org/10.1093/bioinformatics/btv133.
  • Laflamme C, Assaker G, Ramel D, Dorn JF, She D, Maddox PS, Emery G. 2012. Evi5 promotes collective cell migration through its Rab-GAP activity. J Cell Biol 198:57–67. https://doi.org/10.1083/jcb.201112114.
  • Jagoe WN, Lindsay AJ, Read RJ, McCoy AJ, McCaffrey MW, Khan AR. 2006. Crystal structure of rab11 in complex with rab11 family interacting protein 2. Structure 14:1273–1283. https://doi.org/10.1016/j.str.2006.06.010.
  • Shiba T, Koga H, Shin HW, Kawasaki M, Kato R, Nakayama K, Wakatsuki S. 2006. Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1. Proc Natl Acad Sci U S A 103:15416–15421. https://doi.org/10.1073/pnas.0605357103.
  • Kechad A, Jananji S, Ruella Y, Hickson GR. 2012. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr Biol 22:197–203. https://doi.org/10.1016/j.cub.2011.11.062.
  • Kelly EE, Horgan CP, Adams C, Patzer TM, Ni Shuilleabhain DM, Norman JC, McCaffrey MW. 2009. Class I Rab11-family interacting proteins are binding targets for the Rab14 GTPase. Biol Cell 102:51–62. https://doi.org/10.1042/BC20090068.
  • Kouranti I, Sachse M, Arouche N, Goud B, Echard A. 2006. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16:1719–1725. https://doi.org/10.1016/j.cub.2006.07.020.
  • Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, El Marjou A, Formstecher E, Salomon R, Goud B, Echard A. 2011. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 13:981–988. https://doi.org/10.1038/ncb2279.
  • Joseph N, Hutterer A, Poser I, Mishima M. 2012. ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J 31:2604–2614. https://doi.org/10.1038/emboj.2012.139.
  • Schonteich E, Wilson GM, Burden J, Hopkins CR, Anderson K, Goldenring JR, Prekeris R. 2008. The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling. J Cell Sci 121:3824–3833. https://doi.org/10.1242/jcs.032441.
  • Hales CM, Vaerman JP, Goldenring JR. 2002. Rab11 family interacting protein 2 associates with myosin Vb and regulates plasma membrane recycling. J Biol Chem 277:50415–50421. https://doi.org/10.1074/jbc.M209270200.
  • Li D, Kuehn EW, Prekeris R. 2014. Kinesin-2 mediates apical endosome transport during epithelial lumen formation. Cell Logist 4: e28928. https://doi.org/10.4161/cl.28928.
  • Brownlow N, Pike T, Crossland V, Claus J, Parker P. 2014. Regulation of the cytokinesis cleavage furrow by PKCepsilon. Biochem Soc Trans 42:1534–1537. https://doi.org/10.1042/BST20140240.
  • El Amine N, Kechad A, Jananji S, Hickson GR. 2013. Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring. J Cell Biol 203:487–504. https://doi.org/10.1083/jcb.201305053.
  • Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carreno S. 2011. The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 21:1074–1079. https://doi.org/10.1016/j.cub.2011.05.030.
  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. 2004. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101:13489–13494. https://doi.org/10.1073/pnas.0405659101.
  • Laflamme C, Emery G. 2015. In vitro and in vivo characterization of the Rab11-GAP activity of Drosophila Evi5. Methods Mol Biol 1298:187–194. https://doi.org/10.1007/978-1-4939-2569-8_16.
  • Ballif BA, Cao Z, Schwartz D, Carraway KL, III, Gygi SP. 2006. Identification of 14-3-3epsilon substrates from embryonic murine brain. J Proteome Res 5:2372–2379. https://doi.org/10.1021/pr060206k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.