37
Views
23
CrossRef citations to date
0
Altmetric
Article

Overexpression of Epigen during Embryonic Development Induces Reversible, Epidermal Growth Factor Receptor-Dependent Sebaceous Gland Hyperplasia

, , , , , & show all
Pages 3086-3095 | Received 03 Mar 2014, Accepted 27 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Beck B, Blanpain C. 2012. Mechanisms regulating epidermal stem cells. EMBO J. 31:2067–2075. http://dx.doi.org/10.1038/emboj.2012.67.
  • Goldstein J, Horsley V. 2012. Home sweet home: skin stem cell niches. Cell Mol. Life Sci. 69:2573–2582. http://dx.doi.org/10.1007/s00018-012-0943-3.
  • Jaks V, Kasper M, Toftgard R. 2010. The hair follicle—a stem cell zoo. Exp. Cell Res. 316:1422–1428. http://dx.doi.org/10.1016/j.yexcr.2010.03.014.
  • Rompolas P, Greco V. 2014. Stem cell dynamics in the hair follicle niche. Semin. Cell Dev. Biol. 25-26:34–42. http://dx.doi.org/10.1016/j.semcdb.2013.12.005.
  • Tumbar T. 31 January 2012. Ontogeny and homeostasis of adult epithelial skin stem cells. Stem Cell Rev. http://dx.doi.org/10.1007/s12015-012-9348-9.
  • Mascré G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489:257–262. http://dx.doi.org/10.1038/nature11393.
  • Jones PH, Simons BD, Watt FM. 2007. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1:371–381. http://dx.doi.org/10.1016/j.stem.2007.09.014.
  • Alonso L, Fuchs E. 2006. The hair cycle. J. Cell Sci. 119:391–393. http://dx.doi.org/10.1242/jcs02793.
  • Schneider MR, Schmidt-Ullrich R, Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol. 19:R132–R142. http://dx.doi.org/10.1016/j.cub.2008.12.005.
  • Sennett R, Rendl M. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23:917–927. http://dx.doi.org/10.1016/j.semcdb.2012.08.011.
  • Cotsarelis G, Sun TT, Lavker RM. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337. http://dx.doi.org/10.1016/0092-8674(90)90696-C.
  • Liu Y, Lyle S, Yang Z, Cotsarelis G. 2003. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121:963–968. http://dx.doi.org/10.1046/j.1523-1747.2003.12600.x.
  • Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G. 1998. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111(Part 21):3179–3188.
  • Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW. 2003. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120:501–511. http://dx.doi.org/10.1046/j.1523-1747.2003.12088.x.
  • Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G. 2004. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22:411–417. http://dx.doi.org/10.1038/nbt950.
  • Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P, Niemann C. 2011. TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO J. 30:3004–3018. http://dx.doi.org/10.1038/emboj.2011.199.
  • Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. 2005. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11:1351–1354. http://dx.doi.org/10.1038/nm1328.
  • Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. 2000. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461. http://dx.doi.org/10.1016/S0092-8674(00)00050-7.
  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. 2004. Defining the epithelial stem cell niche in skin. Science 303:359–363. http://dx.doi.org/10.1126/science.1092436.
  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R. 2008. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40:1291–1299. http://dx.doi.org/10.1038/ng.239.
  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389. http://dx.doi.org/10.1126/science.1184733.
  • Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, Willemze R, Mullenders LH, Watt FM, de Gruijl FR, van Ewijk W. 2006. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037. http://dx.doi.org/10.1242/dev.02443.
  • Raymond K, Richter A, Kreft M, Frijns E, Janssen H, Slijper M, Praetzel-Wunder S, Langbein L, Sonnenberg A. 2010. Expression of the orphan protein Plet-1 during trichilemmal differentiation of anagen hair follicles. J. Invest. Dermatol. 130:1500–1513. http://dx.doi.org/10.1038/jid.2010.4.
  • Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM. 2009. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439. http://dx.doi.org/10.1016/j.stem.2009.04.014.
  • Horsley V, O'Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E. 2006. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126:597–609. http://dx.doi.org/10.1016/j.cell.2006.06.048.
  • Niemann C, Horsley V. 2012. Development and homeostasis of the sebaceous gland. Semin. Cell Dev. Biol. 23:928–936. http://dx.doi.org/10.1016/j.semcdb.2012.08.010.
  • Schneider MR, Paus R. 2010. Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion. Int. J. Biochem. Cell Biol. 42:181–185. http://dx.doi.org/10.1016/j.biocel.2009.11.017.
  • Frances D, Niemann C. 2012. Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev. Biol. 363:138–146. http://dx.doi.org/10.1016/j.ydbio.2011.12.028.
  • Panteleyev AA, Rosenbach T, Paus R, Christiano AM. 2000. The bulge is the source of cellular renewal in the sebaceous gland of mouse skin. Arch. Dermatol. Res. 292:573–576. http://dx.doi.org/10.1007/s004030000182.
  • Dahlhoff M, Muller AK, Wolf E, Werner S, Schneider MR. 2010. Epigen transgenic mice develop enlarged sebaceous glands. J. Invest. Dermatol. 130:623–626. http://dx.doi.org/10.1038/jid.2009.251.
  • Schneider MR, Wolf E. 2009. The epidermal growth factor receptor ligands at a glance. J. Cell Physiol. 218:460–466. http://dx.doi.org/10.1002/jcp.21635.
  • Schneider MR, Yarden Y. 2014. Structure and function of epigen, the last EGFR ligand. Semin. Cell Dev. Biol. 28:57–61. http://dx.doi.org/10.1016/j.semcdb.2013.12.011.
  • Lee D, Cross SH, Strunk KE, Morgan JE, Bailey CL, Jackson IJ, Threadgill DW. 2004. Wa5 is a novel ENU-induced antimorphic allele of the epidermal growth factor receptor. Mamm. Genome 15:525–536. http://dx.doi.org/10.1007/s00335-004-2384-2.
  • Nguyen H, Rendl M, Fuchs E. 2006. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127:171–183. http://dx.doi.org/10.1016/j.cell.2006.07.036.
  • Paus R, Muller-Rover S, Van DV, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B. 1999. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113:523–532. http://dx.doi.org/10.1046/j.1523-1747.1999.00740.x.
  • Müller-Röver S, Handjiski B, Van DV, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R. 2001. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117:3–15. http://dx.doi.org/10.1046/j.0022-202x.2001.01377.x.
  • Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M. 2003. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17:1677–1689. http://dx.doi.org/10.1101/gad.259003.
  • Hinde E, Haslam IS, Schneider MR, Langan EA, Kloepper JE, Schramm C, Zouboulis CC, Paus R. 2013. A practical guide for the study of human and murine sebaceous glands in situ. Exp. Dermatol. 22:631–637. http://dx.doi.org/10.1111/exd.12207.
  • Kiguchi K, Bol D, Carbajal S, Beltran L, Moats S, Chan K, Jorcano J, Digiovanni J. 2000. Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene 19:4243–4254. http://dx.doi.org/10.1038/sj.onc.1203778.
  • Ghazizadeh S, Taichman LB. 2001. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20:1215–1222. http://dx.doi.org/10.1093/emboj/20.6.1215.
  • Nowak JA, Polak L, Pasolli HA, Fuchs E. 2008. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3:33–43. http://dx.doi.org/10.1016/j.stem.2008.05.009.
  • Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC, Ortonne N, Ortonne JP, Schedl A. 2005. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15:1340–1351. http://dx.doi.org/10.1016/j.cub.2005.06.064.
  • Mardaryev AN, Ahmed MI, Vlahov NV, Fessing MY, Gill JH, Sharov AA, Botchkareva NV. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24:3869–3881. http://dx.doi.org/10.1096/fj.10-160663.
  • Rhee H, Polak L, Fuchs E. 2006. Lhx2 maintains stem cell character in hair follicles. Science 312:1946–1949. http://dx.doi.org/10.1126/science.1128004.
  • Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E. 2009. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 41:1068–1075. http://dx.doi.org/10.1038/ng.431.
  • Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. 2008. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132:299–310. http://dx.doi.org/10.1016/j.cell.2007.11.047.
  • Folgueras AR, Guo X, Pasolli HA, Stokes N, Polak L, Zheng D, Fuchs E. 2013. Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell 13:314–327. http://dx.doi.org/10.1016/j.stem.2013.06.018.
  • Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, Netto GJ, Sidransky D, Berman DM. 2011. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res. 71:3812–3821. http://dx.doi.org/10.1158/0008-5472.CAN-10-3072.
  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648. http://dx.doi.org/10.1016/j.cell.2004.08.012.
  • Jensen KB, Watt FM. 2006. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl. Acad. Sci.U. S. A. 103:11958–11963. http://dx.doi.org/10.1073/pnas.0601886103.
  • Page ME, Lombard P, Ng F, Gottgens B, Jensen KB. 2013. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13:471–482. http://dx.doi.org/10.1016/j.stem.2013.07.010.
  • Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, Amariglio N, Henriksson R, Rechavi G, Hedman H, Wides R, Yarden Y. 2004. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J. 23:3270–3281. http://dx.doi.org/10.1038/sj.emboj.7600342.
  • Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KLIII, Sweeney C. 2004. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J. Biol. Chem. 279:47050–47056. http://dx.doi.org/10.1074/jbc.M409703200.
  • Gandarillas A, Watt FM. 1997. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11:2869–2882. http://dx.doi.org/10.1101/gad.11.21.2869.
  • Arnold I, Watt FM. 2001. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11:558–568. http://dx.doi.org/10.1016/S0960-9822(01)00154-3.
  • Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. 2001. Deregulated expression of c-Myc depletes epidermal stem cells. Nat. Genet. 28:165–168. http://dx.doi.org/10.1038/88889.
  • Dahlhoff M, de Angelis MH, Wolf E, Schneider MR. 2013. Ligand-independent epidermal growth factor receptor hyperactivation increases sebaceous gland size and sebum secretion in mice. Exp. Dermatol. 22:667–669. http://dx.doi.org/10.1111/exd.12219.
  • Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ. 2012. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–158. http://dx.doi.org/10.1016/j.cell.2012.02.042.
  • Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, WMvan de, Poulsom R, Wright NA, Trotter MW, Watt FM, Winton DJ, Clevers H, Jensen KB. 2012. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 14:401–408. http://dx.doi.org/10.1038/ncb2464.
  • Wang Y, Poulin EJ, Coffey RJ. 2013. LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br. J. Cancer 108:1765–1770. http://dx.doi.org/10.1038/bjc.2013.138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.