79
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

, , , , , , , , , , & show all
Article: e00305-16 | Received 27 May 2016, Accepted 02 Dec 2016, Published online: 17 Mar 2023

REFERENCES

  • Egerman MA, Glass DJ. 2014. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49:59–68. https://doi.org/10.3109/10409238.2013.857291.
  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403. https://doi.org/10.1016/S1097-2765(04)00211-4.
  • Sandri M. 2014. Regulation and involvement of the ubiquitin ligases in muscle atrophy. Free Radic Biol Med 75(Suppl 1):S4. https://doi.org/10.1016/j.freeradbiomed.2014.10.833.
  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013. https://doi.org/10.1038/ncb1101-1009.
  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. 2012. Mammalian metallothioneins: properties and functions. Metallomics 4:739–750. https://doi.org/10.1039/c2mt20081c.
  • Kimura T, Kambe T. 2016. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336. https://doi.org/10.3390/ijms17030336.
  • Lindeque JZ, Levanets O, Louw R, van der Westhuizen FH. 2010. The involvement of metallothioneins in mitochondrial function and disease. Curr Protein Pept Sci 11:292–309. https://doi.org/10.2174/138920310791233378.
  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. 2013. The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066. https://doi.org/10.3390/ijms14036044.
  • Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. 2012. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 44:287–301. https://doi.org/10.3109/03602532.2012.725414.
  • Mocchegiani E, Costarelli L, Basso A, Giacconi R, Piacenza F, Malavolta M. 2013. Metallothioneins, ageing and cellular senescence: a future therapeutic target. Curr Pharm Des 19:1753–1764. https://doi.org/10.2174/1381612811319090022.
  • Bolognin S, Cozzi B, Zambenedetti P, Zatta P. 2014. Metallothioneins and the central nervous system: from a deregulation in neurodegenerative diseases to the development of new therapeutic approaches. J Alzheimers Dis 41:29–42.
  • Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ. 2005. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744. https://doi.org/10.1074/jbc.M407517200.
  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. 2004. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51. https://doi.org/10.1096/fj.03-0610com.
  • Urso ML, Scrimgeour AG, Chen YW, Thompson PD, Clarkson PM. 2006. Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol (1985) 101:1136–1148. https://doi.org/10.1152/japplphysiol.00180.2006.
  • Hyldahl RD, O'Fallon KS, Schwartz LM, Clarkson PM. 2010. Knockdown of metallothionein 1 and 2 does not affect atrophy or oxidant activity in a novel in vitro model. J Appl Physiol (1985) 109:1515–1523. https://doi.org/10.1152/japplphysiol.00588.2010.
  • DeRuisseau LR, Recca DM, Mogle JA, Zoccolillo M, DeRuisseau KC. 2009. Metallothionein deficiency leads to soleus muscle contractile dysfunction following acute spinal cord injury in mice. Am J Physiol Regul Integr Comp Physiol 297:R1795–R1802. https://doi.org/10.1152/ajpregu.00263.2009.
  • Maret W. 2011. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 16:1079–1086. https://doi.org/10.1007/s00775-011-0800-0.
  • Kambe T, Tsuji T, Hashimoto A, Itsumura N. 2015. The Physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784. https://doi.org/10.1152/physrev.00035.2014.
  • Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T. 2007. Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645. https://doi.org/10.1083/jcb.200702081.
  • Haase H, Maret W. 2003. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298. https://doi.org/10.1016/S0014-4827(03)00406-3.
  • Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR. 2001. Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. Am J Physiol Endocrinol Metab 281:E25–E34.
  • Bellomo E, Hogstrand C, Maret W. 2014. Redox and zinc signalling pathways converging on protein tyrosine phosphatases. Free Radic Biol Med 75(Suppl 1):S9. https://doi.org/10.1016/j.freeradbiomed.2014.10.851.
  • Mocchegiani E, Giacconi R, Malavolta M. 2008. Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 14:419–428. https://doi.org/10.1016/j.molmed.2008.08.002.
  • Li Y, Maret W. 2009. Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470. https://doi.org/10.1016/j.yexcr.2009.05.016.
  • Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. 2008. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176. https://doi.org/10.1016/S0065-2776(08)00003-5.
  • Ibebunjo C, Chick JM, Kendall T, Eash JK, Li C, Zhang Y, Vickers C, Wu Z, Clarke BA, Shi J, Cruz J, Fournier B, Brachat S, Gutzwiller S, Ma Q, Markovits J, Broome M, Steinkrauss M, Skuba E, Galarneau JR, Gygi SP, Glass DJ. 2013. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol 33:194–212. https://doi.org/10.1128/MCB.01036-12.
  • Russell ST, Siren PM, Siren MJ, Tisdale MJ. 2009. Attenuation of skeletal muscle atrophy in cancer cachexia by D-myo-inositol 1,2,6-triphosphate. Cancer Chemother Pharmacol 64:517–527. https://doi.org/10.1007/s00280-008-0899-z.
  • Maret W, Krezel A. 2007. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13:371–375.
  • Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ. 2004. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304. https://doi.org/10.1128/MCB.24.21.9295-9304.2004.
  • Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD. 1994. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci U S A 91:584–588. https://doi.org/10.1073/pnas.91.2.584.
  • Michalska AE, Choo KH. 1993. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci U S A 90:8088–8092. https://doi.org/10.1073/pnas.90.17.8088.
  • Beattie JH, Wood AM, Newman AM, Bremner I, Choo KH, Michalska AE, Duncan JS, Trayhurn P. 1998. Obesity and hyperleptinemia in metallothionein (-I and -II) null mice. Proc Natl Acad Sci U S A 95:358–363. https://doi.org/10.1073/pnas.95.1.358.
  • Glass DJ. 2010. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278.
  • Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. 2013. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc 45:1712–1720. https://doi.org/10.1249/MSS.0b013e31828cf5f3.
  • Lee NK, Skinner JP, Zajac JD, MacLean HE. 2011. Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Endocrinol Metab 301:E172–E179. https://doi.org/10.1152/ajpendo.00094.2011.
  • Bongers KS, Fox DK, Kunkel SD, Stebounova LV, Murry DJ, Pufall MA, Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Adams CM. 2015. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. Am J Physiol Endocrinol Metab 308:E144–E158. https://doi.org/10.1152/ajpendo.00472.2014.
  • Bodine SC, Furlow JD. 2015. Glucocorticoids and skeletal muscle. Adv Exp Med Biol 872:145–176. https://doi.org/10.1007/978-1-4939-2895-8_7.
  • Wray CJ, Mammen JM, Hershko DD, Hasselgren PO. 2003. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35:698–705. https://doi.org/10.1016/S1357-2725(02)00341-2.
  • Falduto MT, Czerwinski SM, Hickson RC. 1990. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol (1985) 69:1058–1062.
  • Applied Biosystems. 2001. ABI user bulletin UB #2: ABI Prism 7700 sequence detection system. Relative quantitation of gene expression. Applied Biosystems, Foster City, CA.
  • Verbanac D, Milin C, Domitrovic R, Giacometti J, Pantovic R, Ciganj Z. 1997. Determination of standard zinc values in the intact tissues of mice by ICP spectrometry. Biol Trace Elem Res 57:91–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.