41
Views
54
CrossRef citations to date
0
Altmetric
Article

PITX2 and β-Catenin Interactions Regulate Lef-1 Isoform Expression

, , , , , & show all
Pages 7560-7573 | Received 21 Feb 2007, Accepted 20 Aug 2007, Published online: 27 Mar 2023

REFERENCES

  • Amendt, B. A., L. B. Sutherland, and A. F. Russo. 1999. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol. Cell. Biol. 19:7001–7010.
  • Amendt, B. A., L. B. Sutherland, E. Semina, and A. F. Russo. 1998. The Molecular basis of Rieger syndrome: analysis of Pitx2 homeodomain protein activities. J. Biol. Chem. 273:20066–20072.
  • Aoki, M., A. Hecht, U. Kruse, R. Kemler, and P. K. Vogt. 1999. Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc. Natl. Acad. Sci. USA 96:139–144.
  • Behrens, J., J. P. von Kries, M. Kuhl, L. Bruhn, D. Wedlich, R. Grosschedl, and W. Birchmeier. 1996. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642.
  • Billin, A. N., H. Thirlwell, and D. E. Ayer. 2000. Beta-catenin-histone deacetylase interactions regulate the transition of LEF-1 from a transcriptional repressor to an activator. Mol. Cell. Biol. 20:6882–6890.
  • Brantjes, H., J. Roose, M. van de Wetering, and H. Clevers. 2001. All TCF HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res. 29:1410–1419.
  • Carlsson, P., M. L. Waterman, and K. A. Jones. 1993. The hLEF/TCF-1α HMG protein contains a context-dependent transcriptional activation domain that induces the TCRα enhancer in T cells. Genes Dev. 7:2418–2430.
  • Cordray, P., and D. J. Satterwhite. 2005. TGF-β induces novel Lef-1 splice variants through a SMAD-independent signaling pathway. Dev. Dyn. 232:969–978.
  • Cox, C. J., H. M. Espinoza, B. McWilliams, K. Chappell, L. Morton, T. A. Hjalt, E. V. Semina, and B. A. Amendt. 2002. Differential regulation of gene expression by PITX2 isoforms. J. Biol. Chem. 277:25001–25010.
  • Dassule, H. R., and A. P. McMahon. 1998. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev. Biol. 202:215–227.
  • Diamond, E., M. Amen, Q. Hu, H. M. Espinoza, and B. A. Amendt. 2006. Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2. Nucleic Acids Res. 34:5951–5965.
  • Driskell, R. R., X. Liu, M. Luo, M. Filali, W. Zhou, D. Abbott, N. Cheng, C. Moothart, C. D. Sigmund, and J. F. Engelhardt. 2004. Wnt-responsive element controls Lef-1 promoter expression during submucosal gland morphogenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 287:L752–L763.
  • Duan, D., A. Sehgal, J. Yao, and J. F. Engelhardt. 1998. Lef1 transcription factor expression defines airway progenitor cell targets for in utero gene therapy of submucosal gland in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 18:750–758.
  • Duan, D., Y. Yue, W. Zhou, B. Labed, T. C. Ritchie, R. Grosschedl, and J. F. Engelhardt. 1999. Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 126:4441–4453.
  • Engelhardt, J. F., H. Schlossberg, J. R. Yankaskas, and L. Dudus. 1995. Progenitor cells of the adult human airway involved in submucosal gland development. Development 121:2031–2046.
  • Espinoza, H. M., M. Ganga, U. Vadlamudi, D. M. Martin, B. P. Brooks, E. V. Semina, J. C. Murray, and B. A. Amendt. 2005. Protein kinase C phosphorylation modulates N- and C-terminal regulatory activities of the PITX2 homeodomain protein. Biochemistry 44:3942–3954.
  • Fausser, J. L., O. Schlepp, D. Aberdam, G. Meneguzzi, J. V. Ruch, and H. Lesot. 1998. Localization of antigens associated with adherens junctions, desmosomes, and hemidesmosomes during murine molar morphogenesis. Differentiation 63:1–11.
  • Filali, M., N. Cheng, D. Abbott, V. Leontiev, and J. F. Engelhardt. 2002. Wnt-3A/β-catenin signaling induces transcription from the LEF-1 promoter. J. Biol. Chem. 277:33398–33410.
  • Gage, P. J., H. Suh, and S. A. Camper. 1999. The bicoid-related Pitx gene family in development. Mammalian Genome 10:197–200.
  • Giese, K., J. Cox, and R. Grosschedl. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195.
  • Giese, K., and R. Grosschedl. 1993. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J. 12:4667–4676.
  • Green, P. D., T. A. Hjalt, D. E. Kirk, L. B. Sutherland, B. L. Thomas, P. T. Sharpe, M. L. Snead, J. C. Murray, A. F. Russo, and B. A. Amendt. 2001. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: implications for tooth development. Gene Expr. 9:265–281.
  • Hjalt, T. A., B. A. Amendt, and J. C. Murray. 2001. PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: implications for the pathology of Rieger syndrome. J. Cell Biol. 152:545–552.
  • Hjalt, T. A., E. V. Semina, B. A. Amendt, and J. C. Murray. 2000. The Pitx2 protein in mouse development. Dev. Dyn. 218:195–200.
  • Hogan, B. 1994. Manipulating the mouse embryo: a laboratory manual, 2nd/ed. Cold Spring Harbor Laboratory Press, Plainview, NY.
  • Hovanes, K., T. W. Li, J. E. Munguia, T. Truong, T. Milovanovic, J. Lawrence Marsh, R. F. Holcombe, and M. L. Waterman. 2001. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 28:53–57.
  • Hovanes, K., T. W. H. Li, and M. L. Waterman. 2000. The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing. Nucleic Acids Res. 28:1994–2003.
  • Hsu, S., J. Galceran, and R. Grosschedl. 1998. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol. Cell. Biol. 18:4807–4818.
  • Hussein, S. M., E. K. Duff, and C. Sirard. 2003. Smad4 and β-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J. Biol. Chem. 278:48805–48814.
  • Jimenez, J., G. M. Jang, B. L. Semler, and M. L. Waterman. 2005. An internal ribosome entry site mediates translation of lymphoid enhancer factor-1. RNA 11:1385–1399.
  • Kioussi, C., P. Briata, S. H. Baek, D. W. Rose, N. S. Hamblet, T. Herman, K. A. Ohgi, C. Lin, A. Gleiberman, J. Wang, V. Brault, P. Ruiz-Lozano, H. D. Nguyen, R. Kemler, C. K. Glass, A. Wynshaw-Boris, and M. G. Rosenfeld. 2002. Identification of a Wnt/Dvl/β-catenin-Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685.
  • Kratochwil, K., M. Dull, I. Farinas, J. Galceran, and R. Grosschedl. 1996. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 10:1382–1394.
  • Labbe, E., A. Letamendia, and L. Attisano. 2000. Association of Smads with lymphoid enhancer binding factor 1/T cell-specifc factor mediates cooperative signaling by the transforming growth factor-β and Wnt pathways. Proc. Natl. Acad. Sci. USA 97:8358–8363.
  • Li, T. W.-H., J.-H. T. Ting, N. N. Yokoyama, A. Bernstein, M. van de Wetering, and M. L. Waterman. 2006. Wnt activation and alternative promoter expression of LEF1 in colon cancer. Mol. Cell. Biol. 26:5284–5299.
  • Lin, C. R., C. Kioussi, S. O'Connell, P. Briata, D. Szeto, F. Liu, J. C. Izpisua-Belmonte, and M. G. Rosenfeld. 1999. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282.
  • Liu, C., Y. Li, M. Semenov, C. Han, G.-H. Baeg, Y. Tan, Z. Zhang, X. Lin, and X. He. 2002. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847.
  • Liu, W., J. Selever, M. F. Lu, and J. F. Martin. 2003. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130:6375–6385.
  • Lu, M., C. Pressman, R. Dyer, R. L. Johnson, and J. F. Martin. 1999. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401:276–278.
  • Mucchielli, M.-L., T. A. Mitsiadis, S. Raffo, J.-F. Brunet, J.-P. Proust, and C. Goridis. 1997. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev. Biol. 189:275–284.
  • Sasaki, T., Y. Ito, X. Xu, J. Han, J. Bringas, P. T. Maeda, H. C. Slavkin, R. Grosschedl, and Y. Chai. 2005. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol. 278:130–143.
  • Vadlamudi, U., H. M. Espinoza, M. Ganga, D. M. Martin, X. Liu, J. F. Engelhardt, and B. A. Amendt. 2005. PITX2, β-catenin, and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci. 118:1129–1137.
  • van de Wetering, M., R. Cavallo, D. Dooijes, M. van Beest, J. van Es, J. Loureiro, A. Ypma, D. Hursh, T. Jones, A. Bejsovec, M. Peifer, M. Mortin, and H. Clevers. 1997. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799.
  • van Genderen, C., R. M. Okamura, I. Farinas, R.-G. Quo, T. G. Parslow, L. Bruhn, and R. Grosschedl. 1994. Development of several organs that require inductive epithelial-mesenchymal interactions is impared in LEF-1-deficient mice. Genes Dev. 8:2691–2703.
  • Wassarman, P. M., and M. L. DePamphilis. 1993. Guide to techniques in mouse development. Academic Press, San Diego, CA.
  • Zhou, P., C. Byrne, J. Jacobs, and E. Fuchs. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 9:700–713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.