51
Views
29
CrossRef citations to date
0
Altmetric
Article

Na+ Dysregulation Coupled with Ca2+ Entry through NCX1 Promotes Muscular Dystrophy in Mice

, , , , , , , , , , & show all
Pages 1991-2002 | Received 10 Mar 2014, Accepted 12 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Durbeej M, Campbell KP. 2002. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 12:349–361. http://dx.doi.org/10.1016/S0959-437X(02)00309-X.
  • Allen DG, Whitehead NP. 2011. Duchenne muscular dystrophy—what causes the increased membrane permeability in skeletal muscle? Int. J. Biochem. Cell Biol. 43:290–294. http://dx.doi.org/10.1016/j.biocel.2010.11.005.
  • Allen DG, Whitehead NP, Yeung EW. 2005. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J. Physiol. 567:723–735. http://dx.doi.org/10.1113/jphysiol.2005.091694.
  • Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD. 2008. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat. Med. 14:442–447. http://dx.doi.org/10.1038/nm1736.
  • Han R, Grounds MD, Bakker AJ. 2006. Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18. Cell Calcium 40:299–307. http://dx.doi.org/10.1016/j.ceca.2006.04.016.
  • Hopf FW, Turner PR, Denetclaw WFJr, Reddy P, Steinhardt RA. 1996. A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am. J. Physiol. 271:C1325–C1339.
  • Turner PR, Fong PY, Denetclaw WF, Steinhardt RA. 1991. Increased calcium influx in dystrophic muscle. J. Cell Biol. 115:1701–1712. http://dx.doi.org/10.1083/jcb.115.6.1701.
  • De Backer F, Vandebrouck C, Gailly P, Gillis JM. 2002. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J. Physiol. 542:855–865. http://dx.doi.org/10.1113/jphysiol.2002.020487.
  • Mallouk N, Jacquemond V, Allard B. 2000. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc. Natl. Acad. Sci. U. S. A. 97:4950–4955. http://dx.doi.org/10.1073/pnas.97.9.4950.
  • Altamirano F, Lopez JR, Henriquez C, Molinski T, Allen PD, Jaimovich E. 2012. Increased resting intracellular calcium modulates NF-kappaB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes. J. Biol. Chem. 287:20876–20887. http://dx.doi.org/10.1074/jbc.M112.344929.
  • Pressmar J, Brinkmeier H, Seewald MJ, Naumann T, Rudel R. 1994. Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres. Pflugers Arch. 426:499–505. http://dx.doi.org/10.1007/BF00378527.
  • Head SI. 1993. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J. Physiol. 469:11–19.
  • Gailly P, Boland B, Himpens B, Casteels R, Gillis JM. 1993. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14:473–483. http://dx.doi.org/10.1016/0143-4160(93)90006-R.
  • Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD. 2009. Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc. Natl. Acad. Sci. U. S. A. 106:19023–19028. http://dx.doi.org/10.1073/pnas.0906591106.
  • Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S. 2009. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum. Mol. Genet. 18:824–834. http://dx.doi.org/10.1093/hmg/ddn408.
  • Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD. 2011. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J. Clin. Invest. 121:1044–1052. http://dx.doi.org/10.1172/JCI43844.
  • Hirn C, Shapovalov G, Petermann O, Roulet E, Ruegg UT. 2008. Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death. J. Gen. Physiol. 132:199–208. http://dx.doi.org/10.1085/jgp.200810024.
  • Miles MT, Cottey E, Cottey A, Stefanski C, Carlson CG. 2011. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-kappaB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity. J. Neurol. Sci. 303:53–60. http://dx.doi.org/10.1016/j.jns.2011.01.015.
  • Mathes C, Bezanilla F, Weiss RE. 1991. Sodium current and membrane potential in EDL muscle fibers from normal and dystrophic (mdx) mice. Am. J. Physiol. Cell Physiol. C718–C725.
  • Dunn JF, Bannister N, Kemp GJ, Publicover SJ. 1993. Sodium is elevated in mdx muscles: ionic interactions in dystrophic cells. J. Neurol. Sci. 114:76–80. http://dx.doi.org/10.1016/0022-510X(93)90052-Z.
  • Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F. 2011. Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77:2017–2024. http://dx.doi.org/10.1212/WNL.0b013e31823b9c78.
  • Weber MA, Nagel AM, Wolf MB, Jurkat-Rott K, Kauczor HU, Semmler W, Lehmann-Horn F. 2012. Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J. Neurol. 259:2385–2392. http://dx.doi.org/10.1007/s00415-012-6512-8.
  • Blaustein MP, Lederer WJ. 1999. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79:763–854.
  • Fraysse B, Rouaud T, Millour M, Fontaine-Perus J, Gardahaut MF, Levitsky DO. 2001. Expression of the Na(+)/Ca(2+) exchanger in skeletal muscle. Am. J. Physiol. Cell Physiol. 280:C146–C154.
  • Sokolow S, Manto M, Gailly P, Molgo J, Vandebrouck C, Vanderwinden JM, Herchuelz A, Schurmans S. 2004. Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J. Clin. Invest. 113:265–273. http://dx.doi.org/10.1172/JCI200418688.
  • Deval E, Levitsky DO, Marchand E, Cantereau A, Raymond G, Cognard C. 2002. Na(+)/Ca(2+) exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD. Neuromuscul. Disord. 12:665–673. http://dx.doi.org/10.1016/S0960-8966(02)00022-6.
  • Iwata Y, Katanosaka Y, Hisamitsu T, Wakabayashi S. 2007. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. Am. J. Pathol. 171:1576–1587. http://dx.doi.org/10.2353/ajpath.2007.070452.
  • Balnave CD, Allen DG. 1998. Evidence for Na+/Ca2+ exchange in intact single skeletal muscle fibers from the mouse. Am. J. Physiol. 274:C940–C946.
  • Brennan KJ, Hardeman EC. 1993. Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. J. Biol. Chem. 268:719–725.
  • Nicoll DA, Longoni S, Philipson KD. 1990. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science 250:562–565. http://dx.doi.org/10.1126/science.1700476.
  • Weber CR, Ginsburg KS, Philipson KD, Shannon TR, Bers DM. 2001. Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J. Gen. Physiol. 117:119–131. http://dx.doi.org/10.1085/jgp.117.2.119.
  • James PF, Grupp IL, Grupp G, Woo AL, Askew GR, Croyle ML, Walsh RA, Lingrel JB. 1999. Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol. Cell 3:555–563. http://dx.doi.org/10.1016/S1097-2765(00)80349-4.
  • Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, Chantawansri C, Ritter MR, Friedlander M, Nicoll DA, Frank JS, Jordan MC, Roos KP, Ross RS, Philipson KD. 2004. Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circulat. Res. 95:604–611. http://dx.doi.org/10.1161/01.RES.0000142316.08250.68.
  • Bothe GW, Haspel JA, Smith CL, Wiener HH, Burden SJ. 2000. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis 26:165–166. http://dx.doi.org/10.1002/(SICI)1526-968X(200002)26:2<165::AID-GENE22>3.0.CO;2-F.
  • Nolan T, Hands RE, Bustin SA. 2006. Quantification of mRNA using real-time RT-PCR. Nat. protoc. 1:1559–1582. http://dx.doi.org/10.1038/nprot.2006.236.
  • Davis J, Kwong JQ, Kitsis RN, Molkentin JD. 2013. Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle. PLoS One 8:e82053. http://dx.doi.org/10.1371/journal.pone.0082053.
  • Eltit JM, Yang T, Li H, Molinski TF, Pessah IN, Allen PD, Lopez JR. 2010. RyR1-mediated Ca2+ leak and Ca2+ entry determine resting intracellular Ca2+ in skeletal myotubes. J. Biol. Chem. 285:13781–13787. http://dx.doi.org/10.1074/jbc.M110.107300.
  • Lopez JR, Alamo L, Caputo C, Dipolo R, Vergara J. 1983. Determination of ionic calcium in frog skeletal-muscle fibers. Biophys. J. 43:1–4. http://dx.doi.org/10.1016/S0006-3495(83)84316-1.
  • Eltit JM, Ding X, Pessah IN, Allen PD, Lopez JR. 2013. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia. FASEB J. 27:991–1000. http://dx.doi.org/10.1096/fj.12-218354.
  • Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SCJr. 2012. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circulat. Res. 110:841–850. http://dx.doi.org/10.1161/CIRCRESAHA.111.258251.
  • Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA. 2006. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15:2087–2097. http://dx.doi.org/10.1093/hmg/ddl132.
  • Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12:331–343. http://dx.doi.org/10.1007/s10741-007-9034-1.
  • Chen YW, Zhao P, Borup R, Hoffman EP. 2000. Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J. Cell Biol. 151:1321–1336. http://dx.doi.org/10.1083/jcb.151.6.1321.
  • Adachi-Akahane S, Lu L, Li Z, Frank JS, Philipson KD, Morad M. 1997. Calcium signaling in transgenic mice overexpressing cardiac Na(+)-Ca2+ exchanger. J. Gen. physiol. 109:717–729. http://dx.doi.org/10.1085/jgp.109.6.717.
  • Pott C, Goldhaber JI, Philipson KD. 2004. Genetic manipulation of cardiac Na+/Ca2+ exchange expression. Biochem. Biophys. Res. Commun. 322:1336–1340. http://dx.doi.org/10.1016/j.bbrc.2004.08.038.
  • Noireaud J, Leoty C. 1989. Na+-Ca-2+ exchange in limb muscles of dystrophic (C57 Bl/6j Dy2j/Dy2j) mice. Q. J. Exp. Physiol. 74:75–77.
  • Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP. 2003. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172. http://dx.doi.org/10.1038/nature01573.
  • Hoffman EP, Brown RH, Kunkel LM. 1987. Dystrophin: the protein product of the Duchenne muscular-dystrophy locus. Cell 51:919–928. http://dx.doi.org/10.1016/0092-8674(87)90579-4.
  • Sicinski P, Geng Y, Rydercook AS, Barnard EA, Darlison MG, Barnard PJ. 1989. The molecular basis of muscular dystrophy in the Mdx mouse: a point mutation. Science 244:1578–1580. http://dx.doi.org/10.1126/science.2662404.
  • Orlowski J, Lingrel JB. 1988. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J. Biol. Chem. 263:10436–10442.
  • Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA. 2004. The Na(+)-K(+)-ATPase alpha2-subunit isoform modulates contractility in the perinatal mouse diaphragm. Am. J. Physiol. Cell Physiol. 287:C1300–C1310. http://dx.doi.org/10.1152/ajpcell.00231.2004.
  • Gandevia SC, McKenzie DK, Neering IR. 1983. Endurance properties of respiratory and limb muscles. Respir. Physiol. 53:47–61. http://dx.doi.org/10.1016/0034-5687(83)90015-4.
  • Barr DJ, Green HJ, Lounsbury DS, Rush JW, Ouyang J. 2005. Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. J. Appl. Physiol. 99:656–664. http://dx.doi.org/10.1152/japplphysiol.00343.2004.
  • Pereon Y, Dettbarn C, Lu Y, Westlund KN, Zhang JT, Palade P. 1998. Dihydropyridine receptor isoform expression in adult rat skeletal muscle. Pflugers Arch. 436:309–314. http://dx.doi.org/10.1007/s004240050637.
  • Jorgensen LH, Blain A, Greally E, Laval SH, Blamire AM, Davison BJ, Brinkmeier H, MacGowan GA, Schroder HD, Bushby K, Straub V, Lochmuller H. 2011. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. Am. J. Pathol. 178:273–283. http://dx.doi.org/10.1016/j.ajpath.2010.11.027.
  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM. 1991. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539. http://dx.doi.org/10.1038/352536a0.
  • Wang GK, Calderon J, Wang SY. 2008. State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine. Mol. Pharmacol. 73:940–948. http://dx.doi.org/10.1124/mol.107.041541.
  • El-Bizri N, Kahlig KM, Shryock JC, George AL, Belardinelli L, Rajamani S. 2011. Ranolazine block of human Na(v)1.4 sodium channels and paramyotonia congenita mutants. Channels 5:161–172. http://dx.doi.org/10.4161/chan.5.2.14851.
  • Soliman D, Wang LG, Hamming KSC, Yang W, Fatehi M, Carter CC, Clanachan AS, Light PE. 2012. Late sodium current inhibition alone with ranolazine is sufficient to reduce ischemia- and cardiac glycoside-induced calcium overload and contractile dysfunction mediated by reverse-mode sodium/calcium exchange. J. Pharmacol. Exp. Ther. 343:325–332. http://dx.doi.org/10.1124/jpet.112.196949.
  • Wasserstrom JA, Sharma R, O'Toole MJ, Zheng JB, Kelly JE, Shryock J, Belardinelli L, Aistrup GL. 2009. Ranolazine antagonizes the effects of increased late sodium current on intracellular calcium cycling in rat isolated intact heart. J. Pharmacol. Exp. Ther. 331:382–391. http://dx.doi.org/10.1124/jpet.109.156471.
  • Fraser H, Belardinelli L, Wang LG, Light PE, McVeigh JJ, Clanachan AS. 2006. Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J. Mol. Cell. Cardiol. 41:1031–1038. http://dx.doi.org/10.1016/j.yjmcc.2006.08.012.
  • Zhang XQ, Yamada S, Barry WH. 2008. Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia. J. Cardiovasc. Pharmacol. 51:443–449. http://dx.doi.org/10.1097/FJC.0b013e318168e711.
  • Sossalla S, Wagner S, Rasenack ECL, Ruff H, Weber SL, Schoendube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS. 2008. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts: role of late sodium current and intracellular ion accumulation. J. Mol. Cell. Cardiol. 45:32–43. http://dx.doi.org/10.1016/j.yjmcc.2008.03.006.
  • Spencer MJ, Mellgren RL. 2002. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum. Mol. Genet. 11:2645–2655. http://dx.doi.org/10.1093/hmg/11.21.2645.
  • Takekura H, Sun X, Franzini-Armstrong C. 1994. Development of the excitation-contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially. J. Muscle Res. Cell Motil. 15:102–118. http://dx.doi.org/10.1007/BF00130422.
  • Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ, Calcium Up-Regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) Trial Investigators. 2009. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15:171–181. http://dx.doi.org/10.1016/j.cardfail.2009.01.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.