43
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5

, , , , , , , & show all
Article: e00341-19 | Received 25 Jul 2019, Accepted 01 Nov 2019, Published online: 03 Mar 2023

REFERENCES

  • Herz HM, Garruss A, Shilatifard A. 2013. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38:621–639. https://doi.org/10.1016/j.tibs.2013.09.004.
  • Carlson SM, Gozani O. 2016. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb Perspect Med 6:a026435. https://doi.org/10.1101/cshperspect.a026435.
  • Calpena E, Palau F, Espinós C, Galindo MI. 2015. Evolutionary history of the Smyd gene family in metazoans: a framework to identify the orthologs of human Smyd genes in Drosophila and other animal species. PLoS One 10:e0134106. https://doi.org/10.1371/journal.pone.0134106.
  • Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. 2015. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16:1406–1428. https://doi.org/10.3390/ijms16011406.
  • Du SJ, Tan X, Zhang J. 2014. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken) 297:1650–1662. https://doi.org/10.1002/ar.22972.
  • Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. 2018. The Smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Physiol 1:140–152. https://doi.org/10.1016/j.cophys.2017.10.001.
  • Gao J, Li J, Li BJ, Yagil E, Zhang J, Du SJ. 2014. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PLoS One 9:e86808. https://doi.org/10.1371/journal.pone.0086808.
  • Kawamura S, Yoshigai E, Kuhara S, Tashiro K. 2008. Smyd1 and Smyd2 are expressed in muscle tissue in Xenopus laevis. Cytotechnology 57:161–168. https://doi.org/10.1007/s10616-008-9128-1.
  • Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ. 2013. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 24:3511–3521. https://doi.org/10.1091/mbc.E13-06-0352.
  • Tan X, Rotllant J, Li H, De Deyne P, DeDeyne P, Du SJ. 2006. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103:2713–2718. https://doi.org/10.1073/pnas.0509503103.
  • Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D. 2002. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32. https://doi.org/10.1038/ng866.
  • Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, Hassel D, Marquart S, Dahme T, Vogel B, Fishman MC, Katus HA, Strähle U, Rottbauer W. 2011. The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 124:3127–3136. https://doi.org/10.1242/jcs.084772.
  • Prill K, Windsor Reid P, Wohlgemuth SL, Pilgrim DB. 2015. Still heart encodes a structural HMT, SMYD1b, with chaperone-like function during fast muscle sarcomere assembly. PLoS One 10:e0142528. https://doi.org/10.1371/journal.pone.0142528.
  • Nagandla H, Lopez S, Yu W, Rasmussen TL, Tucker HO, Schwartz RJ, Stewart MD. 2016. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol 410:86–97. https://doi.org/10.1016/j.ydbio.2015.12.005.
  • Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, Tucker HO. 2015. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 10:e0121765. https://doi.org/10.1371/journal.pone.0121765.
  • Franklin S, Kimball T, Rasmussen TL, Rosa-Garrido M, Chen H, Tran T, Miller MR, Gray R, Jiang S, Ren S, Wang Y, Tucker HO, Vondriska TM. 2016. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am J Physiol Heart Circ Physiol 311:H1234–H1247. https://doi.org/10.1152/ajpheart.00235.2016.
  • Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, Strauss E, Van’t Hof FNG, Webb TR, Erdman R, Ritchie MD, Elmore JR, Verma A, Pendergrass S, Kullo IJ, Ye Z, Peissig PL, Gottesman O, Verma SS, Malinowski J, Rasmussen-Torvik LJ, Borthwick KM, et al.. 2017. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res 120:341–353. https://doi.org/10.1161/CIRCRESAHA.116.308765.
  • Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA. 2012. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26:114–119. https://doi.org/10.1101/gad.177758.111.
  • Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G. 2013. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 27:1299–1312. https://doi.org/10.1101/gad.217240.113.
  • Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O. 2014. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510:283–287. https://doi.org/10.1038/nature13320.
  • Reynoird N, Mazur PK, Stellfeld T, Flores NM, Lofgren SM, Carlson SM, Brambilla E, Hainaut P, Kaznowska EB, Arrowsmith CH, Khatri P, Stresemann C, Gozani O, Sage J. 2016. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev 30:772–785. https://doi.org/10.1101/gad.275529.115.
  • Bagislar S, Sabò A, Kress TR, Doni M, Nicoli P, Campaner S, Amati B. 2016. Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 7:66398–66415. https://doi.org/10.18632/oncotarget.12012.
  • Oliveira-Santos W, Rabello DA, Lucena-Araujo AR, de Oliveira FM, Rego EM, Pittella Silva F, Saldanha-Araujo F. 2016. Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia. Tumour Biol 37:9473–9481. https://doi.org/10.1007/s13277-016-4846-z.
  • Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, Couture JF. 2011. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol 3:301–308. https://doi.org/10.1093/jmcb/mjr025.
  • Ahmed H, Duan S, Arrowsmith CH, Barsyte-Lovejoy D, Schapira M. 2016. An integrative proteomic approach identifies novel cellular SMYD2 substrates. J Proteome Res 15:2052–2059. https://doi.org/10.1021/acs.jproteome.6b00220.
  • Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, Campbell RM, Garcia BA, Nguyen H. 2016. Quantitative profiling of the activity of protein lysine methyltransferase Smyd2 using SILAC-based proteomics. Mol Cell Proteomics 15:892–905. https://doi.org/10.1074/mcp.M115.053280.
  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. 2006. Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–632. https://doi.org/10.1038/nature05287.
  • Saddic LA, West LE, Aslanian A, Yates JR, Rubin SM, Gozani O, Sage J. 2010. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285:37733–37740. https://doi.org/10.1074/jbc.M110.137612.
  • Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamon R, Le B, Mas G, Annan R, Sage J, Garcia BA, Tummino PJ, Gozani O, Kruger RG. 2012. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7:340–343. https://doi.org/10.4161/epi.19506.
  • Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK. 2012. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48:28–38. https://doi.org/10.1016/j.molcel.2012.07.020.
  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y. 2004. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740. https://doi.org/10.1038/ncb1151.
  • Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. 2016. Smyd3 is a transcriptional potentiator of multiple cancer-promoting genes and required for liver and colon cancer development. Cancer Cell 29:354–366. https://doi.org/10.1016/j.ccell.2016.01.013.
  • Ansieau S, Leutz A. 2002. The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277:4906–4910. https://doi.org/10.1074/jbc.M110078200.
  • Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. 2008. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7:560–572. https://doi.org/10.1074/mcp.M700271-MCP200.
  • Sims RJ, Weihe EK, Zhu L, O’Malley S, Harriss JV, Gottlieb PD. 2002. m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J Biol Chem 277:26524–26529. https://doi.org/10.1074/jbc.M204121200.
  • Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L, Yang Z. 2010. Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J Biol Chem 285:40635–40644. https://doi.org/10.1074/jbc.M110.168187.
  • Xu S, Wu J, Sun B, Zhong C, Ding J. 2011. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Nucleic Acids Res 39:4438–4449. https://doi.org/10.1093/nar/gkr019.
  • Sirinupong N, Brunzelle J, Doko E, Yang Z. 2011. Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. J Mol Biol 406:149–159. https://doi.org/10.1016/j.jmb.2010.12.014.
  • Silva FP, Hamamoto R, Kunizaki M, Tsuge M, Nakamura Y, Furukawa Y. 2008. Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene 27:2686–2692. https://doi.org/10.1038/sj.onc.1210929.
  • Xu S, Zhong C, Zhang T, Ding J. 2011. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J Mol Cell Biol 3:293–300. https://doi.org/10.1093/jmcb/mjr015.
  • Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, Shaaban S, Tucker H. 2015. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 6:4005–4019. https://doi.org/10.18632/oncotarget.2970.
  • Green EM, Mas G, Young NL, Garcia BA, Gozani O. 2012. Methylation of H4 lysines 5, 8, and 12 by yeast Set5 calibrates chromatin stress responses. Nat Struct Mol Biol 19:361–363. https://doi.org/10.1038/nsmb.2252.
  • Martín GM, King DA, Green EM, Garcia-Nieto PE, Alexander R, Collins SR, Krogan NJ, Gozani OP, Morrison AJ. 2014. Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics 9:513–522. https://doi.org/10.4161/epi.27645.
  • Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. 2017. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 12:93–104. https://doi.org/10.1080/15592294.2016.1265712.
  • Zhang MM, Zhao XQ, Cheng C, Bai FW. 2015. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol J 10:1903–1911. https://doi.org/10.1002/biot.201500508.
  • Lamour J, Wan C, Zhang M, Zhao X, Den Haan R. 2019. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. FEMS Yeast Res 19:foz035. https://doi.org/10.1093/femsyr/foz035.
  • Green EM, Morrison AJ, Gozani O. 2012. New marks on the block: Set5 methylates H4 lysines 5, 8, and 12. Nucleus 3:335–339. https://doi.org/10.4161/nucl.20695.
  • Stothard P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102, 1104–1104. https://doi.org/10.2144/00286ir01.
  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. 2008. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7:1389–1396. https://doi.org/10.1074/mcp.M700468-MCP200.
  • Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686. https://doi.org/10.1126/science.1172867.
  • Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10:676–682. https://doi.org/10.1038/nmeth.2519.
  • Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF. 2007. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104:2193–2198. https://doi.org/10.1073/pnas.0607084104.
  • Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R. 2010. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4. https://doi.org/10.1126/scisignal.2001182.
  • Zhou C, Elia AE, Naylor ML, Dephoure N, Ballif BA, Goel G, Xu Q, Ng A, Chou DM, Xavier RJ, Gygi SP, Elledge SJ. 2016. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A 113:E3667–E3675. https://doi.org/10.1073/pnas.1602827113.
  • Winter DL, Hart-Smith G, Wilkins MR. 2018. Characterization of protein methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 reveals extensive post-translational modification. J Mol Biol 430:102–118. https://doi.org/10.1016/j.jmb.2017.11.009.
  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M. 2005. Global analysis of protein phosphorylation in yeast. Nature 438:679–684. https://doi.org/10.1038/nature04187.
  • Liang C, Stillman B. 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev 11:3375–3386. https://doi.org/10.1101/gad.11.24.3375.
  • Donovan S, Harwood J, Drury LS, Diffley JF. 1997. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94:5611–5616. https://doi.org/10.1073/pnas.94.11.5611.
  • Lopes da Rosa J, Holik J, Green EM, Rando OJ, Kaufman PD. 2011. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 187:9–19. https://doi.org/10.1534/genetics.110.123117.
  • Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42. https://doi.org/10.1006/jmbi.1997.1494.
  • Tran K, Jethmalani Y, Jaiswal D, Green EM. 2018. Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast. J Biol Chem 293:14429–14443. https://doi.org/10.1074/jbc.RA118.003078.
  • Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V, Espejo A, Casadio F, Bassi C, Amati B, Bedford MT, Guccione E, Gozani O. 2009. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS One 4:e6789. https://doi.org/10.1371/journal.pone.0006789.
  • Lambert JP, Mitchell L, Rudner A, Baetz K, Figeys D. 2009. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 8:870–882. https://doi.org/10.1074/mcp.M800447-MCP200.
  • Wolters DA, Washburn MP, Yates JR, III. 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690. https://doi.org/10.1021/ac010617e.
  • He L, Diedrich J, Chu YY, Yates JR, III. 2015. Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal Chem 87:11361–11367. https://doi.org/10.1021/acs.analchem.5b02721.
  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. 2003. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50. https://doi.org/10.1021/pr025556v.
  • Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK, Cociorva D, Lu B, Liao L, Hewel J, Han X, Wong CC, Fonslow B, Delahunty C, Gao Y, Shah H, Yates JR, III. 2015. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics 129:16–24. https://doi.org/10.1016/j.jprot.2015.07.001.
  • Tabb DL, McDonald WH, Yates JR, III. 2002. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1:21–26. https://doi.org/10.1021/pr015504q.
  • Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP. 2006. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292. https://doi.org/10.1038/nbt1240.
  • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.