43
Views
21
CrossRef citations to date
0
Altmetric
Article

S6 Kinase- and β-TrCP2-Dependent Degradation of p19Arf Is Required for Cell Proliferation

, , , , &
Pages 3517-3527 | Received 02 Apr 2015, Accepted 28 Jul 2015, Published online: 20 Mar 2023

REFERENCES

  • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274–293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
  • Shimobayashi M, Hall MN. 2014. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162. http://dx.doi.org/10.1038/nrm3757.
  • Magnuson B, Ekim B, Fingar DC. 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1–21. http://dx.doi.org/10.1042/BJ20110892.
  • Silvera D, Formenti SC, Schneider RJ. 2010. Translational control in cancer. Nat Rev Cancer 10:254–266. http://dx.doi.org/10.1038/nrc2824.
  • Ma XM, Blenis J. 2009. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. http://dx.doi.org/10.1038/nrm2672.
  • Jewell JL, Guan KL. 2013. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38:233–242. http://dx.doi.org/10.1016/j.tibs.2013.01.004.
  • Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N. 2010. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172–1176. http://dx.doi.org/10.1126/science.1187532.
  • Mori S, Nada S, Kimura H, Tajima S, Takahashi Y, Kitamura A, Oneyama C, Okada M. 2014. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. PLoS One 9:e88891. http://dx.doi.org/10.1371/journal.pone.0088891.
  • Nakayama KI, Nakayama K. 2006. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381. http://dx.doi.org/10.1038/nrc1881.
  • Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. http://dx.doi.org/10.1152/physrev.00027.2001.
  • Cardozo T, Pagano M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5:739–751. http://dx.doi.org/10.1038/nrm1471.
  • Fuchs SY, Spiegelman VS, Kumar KG. 2004. The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23:2028–2036. http://dx.doi.org/10.1038/sj.onc.1207389.
  • Frescas D, Pagano M. 2008. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449. http://dx.doi.org/10.1038/nrc2396.
  • Skaar JR, D'Angiolella V, Pagan JK, Pagano M. 2009. SnapShot: F box proteins II. Cell 137:1358. http://dx.doi.org/10.1016/j.cell.2009.05.040.
  • Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M. 2003. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev Cell 4:799–812. http://dx.doi.org/10.1016/S1534-5807(03)00154-0.
  • Nakayama K, Hatakeyama S, Maruyama S, Kikuchi A, Onoe K, Good RA, Nakayama KI. 2003. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene. Proc Natl Acad Sci U S A 100:8752–8757. http://dx.doi.org/10.1073/pnas.1133216100.
  • Maruyama S, Hatakeyama S, Nakayama K, Ishida N, Kawakami K, Nakayama K. 2001. Characterization of a mouse gene (Fbxw6) that encodes a homologue of Caenorhabditis elegans SEL-10. Genomics 78:214–222. http://dx.doi.org/10.1006/geno.2001.6658.
  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. 1996. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720. http://dx.doi.org/10.1016/S0092-8674(00)81237-4.
  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. 1996. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37. http://dx.doi.org/10.1016/S0092-8674(00)81079-X.
  • Tamase A, Muraguchi T, Naka K, Tanaka S, Kinoshita M, Hoshii T, Ohmura M, Shugo H, Ooshio T, Nakada M, Sawamoto K, Onodera M, Matsumoto K, Oshima M, Asano M, Saya H, Okano H, Suda T, Hamada J, Hirao A. 2009. Identification of tumor-initiating cells in a highly aggressive brain tumor using promoter activity of nucleostemin. Proc Natl Acad Sci U S A 106:17163–17168. http://dx.doi.org/10.1073/pnas.0905016106.
  • Hosogane M, Funayama R, Nishida Y, Nagashima T, Nakayama K. 2013. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet 9:e1003698. http://dx.doi.org/10.1371/journal.pgen.1003698.
  • Morita S, Kojima T, Kitamura T. 2000. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066. http://dx.doi.org/10.1038/sj.gt.3301206.
  • Nakagawa T, Lv L, Nakagawa M, Yu Y, Yu C, D'Alessio AC, Nakayama K, Fan HY, Chen X, Xiong Y. 2015. CRL4(VprBP) E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol Cell 57:247–260. http://dx.doi.org/10.1016/j.molcel.2014.12.002.
  • Nakagawa T, Xiong Y. 2011. X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell 43:381–391. http://dx.doi.org/10.1016/j.molcel.2011.05.033.
  • Kaneko-Oshikawa C, Nakagawa T, Yamada M, Yoshikawa H, Matsumoto M, Yada M, Hatakeyama S, Nakayama K, Nakayama KI. 2005. Mammalian E4 is required for cardiac development and maintenance of the nervous system. Mol Cell Biol 25:10953–10964. http://dx.doi.org/10.1128/MCB.25.24.10953-10964.2005.
  • Schalm SS, Blenis J. 2002. Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639. http://dx.doi.org/10.1016/S0960-9822(02)00762-5.
  • Zhang J, Gao Z, Yin J, Quon MJ, Ye J. 2008. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 283:35375–35382. http://dx.doi.org/10.1074/jbc.M806480200.
  • Lowe SW, Sherr CJ. 2003. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13:77–83. http://dx.doi.org/10.1016/S0959-437X(02)00013-8.
  • Moritz A, Li Y, Guo A, Villen J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren JM, Hornbeck P, Cantley LC, Gygi SP, Rush J, Comb MJ. 2010. Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3:ra64.
  • Jerome-Majewska LA, Jenkins GP, Ernstoff E, Zindy F, Sherr CJ, Papaioannou VE. 2005. Tbx3, the ulnar-mammary syndrome gene, and Tbx2 interact in mammary gland development through a p19Arf/p53-independent pathway. Dev Dyn 234:922–933. http://dx.doi.org/10.1002/dvdy.20575.
  • Zhou W, Wei W, Sun Y. 2013. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 23:599–619. http://dx.doi.org/10.1038/cr.2013.44.
  • Chen D, Shan J, Zhu WG, Qin J, Gu W. 2010. Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature 464:624–627. http://dx.doi.org/10.1038/nature08820.
  • Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W. 2013. Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 51:46–56. http://dx.doi.org/10.1016/j.molcel.2013.05.006.
  • Wang X, Zha M, Zhao X, Jiang P, Du W, Tam AY, Mei Y, Wu M. 2013. Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat Commun 4:1551. http://dx.doi.org/10.1038/ncomms2533.
  • Pardo OE, Seckl MJ. 2013. S6K2: the neglected S6 kinase family member. Front Oncol 3:191. http://dx.doi.org/10.3389/fonc.2013.00191.23898460.
  • Zhang Y, Xiong Y. 1999. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3:579–591. http://dx.doi.org/10.1016/S1097-2765(00)80351-2.
  • Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G. 2004. S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124. http://dx.doi.org/10.1128/MCB.24.8.3112-3124.2004.
  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. 2006. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314:467–471. http://dx.doi.org/10.1126/science.1130276.
  • Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M. 2011. mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol Cell 44:317–324. http://dx.doi.org/10.1016/j.molcel.2011.09.005.
  • Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S, Lyssiotis CA, Gygi SP, Toker A, Cantley LC, Asara JM, Harper JW, Wei W. 2011. mTOR drives its own activation via SCFβTrCP-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44:290–303. http://dx.doi.org/10.1016/j.molcel.2011.08.030.
  • Zhao Y, Xiong X, Sun Y. 2011. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44:304–316. http://dx.doi.org/10.1016/j.molcel.2011.08.029.
  • Li X, Liu J, Gao T. 2009. β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol Cell Biol 29:6192–6205. http://dx.doi.org/10.1128/MCB.00681-09.
  • Miceli AP, Saporita AJ, Weber JD. 2012. Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 32:348–364. http://dx.doi.org/10.1128/MCB.06030-11.
  • Wotton KR, Weierud FK, Dietrich S, Lewis KE. 2008. Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates. BMC Evol Biol 8:171.45. http://dx.doi.org/10.1186/1471-2148-8-171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.