41
Views
4
CrossRef citations to date
0
Altmetric
Research Article

CKS Proteins Promote Checkpoint Recovery by Stimulating Phosphorylation of Treslin

, , , , , , & show all
Article: e00344-17 | Received 21 Jun 2017, Accepted 11 Jul 2017, Published online: 17 Mar 2023

REFERENCES

  • Hadwiger JA, Reed SI. 1990. Nucleotide sequence of the Saccharomyces cerevisiae CLN1 and CLN2 genes. Nucleic Acids Res 18:4025. https://doi.org/10.1093/nar/18.13.4025.
  • Hayles J, Beach D, Durkacz B, Nurse P. 1986. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol Gen Genet 202:291–293. https://doi.org/10.1007/BF00331653.
  • Richardson HE, Stueland CS, Thomas J, Russell P, Reed SI. 1990. Human cDNAs encoding homologs of the small p34Cdc28/Cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev 4:1332–1344. https://doi.org/10.1101/gad.4.8.1332.
  • Brizuela L, Draetta G, Beach D. 1987. p13suc1 acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase. EMBO J 6:3507–3514.
  • Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI, Tainer JA. 1996. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84:863–874. https://doi.org/10.1016/S0092-8674(00)81065-X.
  • Koivomagi M, Ord M, Iofik A, Valk E, Venta R, Faustova I, Kivi R, Balog ER, Rubin SM, Loog M. 2013. Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20:1415–1424. https://doi.org/10.1038/nsmb.2706.
  • Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, Rubin SM, Morgan DO, Loog M. 2011. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480:128–131. https://doi.org/10.1038/nature10560.
  • Patra D, Dunphy WG. 1998. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase-promoting complex at mitosis. Genes Dev 12:2549–2559. https://doi.org/10.1101/gad.12.16.2549.
  • Patra D, Wang SX, Kumagai A, Dunphy WG. 1999. The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators. J Biol Chem 274:36839–36842. https://doi.org/10.1074/jbc.274.52.36839.
  • Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, Medema R, Pines J. 2008. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell 30:290–302. https://doi.org/10.1016/j.molcel.2008.02.027.
  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A. 2001. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat Cell Biol 3:321–324. https://doi.org/10.1038/35060126.
  • Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI. 2001. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol Cell 7:639–650. https://doi.org/10.1016/S1097-2765(01)00210-6.
  • Chaves S, Baskerville C, Yu V, Reed SI. 2010. Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol Cell Biol 30:5284–5294. https://doi.org/10.1128/MCB.00952-10.
  • Yu VP, Baskerville C, Grunenfelder B, Reed SI. 2005. A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. Mol Cell 17:145–151. https://doi.org/10.1016/j.molcel.2004.11.020.
  • Pan YR, Sun M, Wohlschlegel J, Reed SI. 2013. Cks1 enhances transcription efficiency at the GAL1 locus by linking the Paf1 complex to the 19S proteasome. Eukaryot Cell 12:1192–1201. https://doi.org/10.1128/EC.00151-13.
  • Martinsson-Ahlzen HS, Liberal V, Grunenfelder B, Chaves SR, Spruck CH, Reed SI. 2008. Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol 28:5698–5709. https://doi.org/10.1128/MCB.01833-07.
  • Chow LS, Lam CW, Chan SY, Tsao SW, To KF, Tong SF, Hung WK, Dammann R, Huang DP, Lo KW. 2006. Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 25:310–316.
  • de Vos S, Krug U, Hofmann WK, Pinkus GS, Swerdlow SH, Wachsman W, Grogan TM, Said JW, Koeffler HP. 2003. Cell cycle alterations in the blastoid variant of mantle cell lymphoma (MCL-BV) as detected by gene expression profiling of mantle cell lymphoma (MCL) and MCL-BV. Diagn Mol Pathol 12:35–43. https://doi.org/10.1097/00019606-200303000-00005.
  • de Wit NJ, Rijntjes J, Diepstra JH, van Kuppevelt TH, Weidle UH, Ruiter DJ, van Muijen GN. 2005. Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br J Cancer 92:2249–2261. https://doi.org/10.1038/sj.bjc.6602612.
  • Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H, Kitagawa M. 2003. High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun 303:978–984. https://doi.org/10.1016/S0006-291X(03)00469-8.
  • Kawakami K, Enokida H, Tachiwada T, Gotanda T, Tsuneyoshi K, Kubo H, Nishiyama K, Takiguchi M, Nakagawa M, Seki N. 2006. Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncol Rep 16:521–531.
  • Li M, Lin YM, Hasegawa S, Shimokawa T, Murata K, Kameyama M, Ishikawa O, Katagiri T, Tsunoda T, Nakamura Y, Furukawa Y. 2004. Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int J Oncol 24:305–312.
  • Masuda TA, Inoue H, Nishida K, Sonoda H, Yoshikawa Y, Kakeji Y, Utsunomiya T, Mori M. 2003. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res 9:5693–5698.
  • Musat M, Vax VV, Borboli N, Gueorguiev M, Bonner S, Korbonits M, Grossman AB. 2004. Cell cycle dysregulation in pituitary oncogenesis. Front Horm Res 32:34–62. https://doi.org/10.1159/000079037.
  • Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM. 2006. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer 119:599–607. https://doi.org/10.1002/ijc.21902.
  • Ouellet V, Provencher DM, Maugard CM, Le Page C, Ren F, Lussier C, Novak J, Ge B, Hudson TJ, Tonin PN, Mes-Masson AM. 2005. Discrimination between serous low malignant potential and invasive epithelial ovarian tumors using molecular profiling. Oncogene 24:4672–4687. https://doi.org/10.1038/sj.onc.1208214.
  • Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP. 2006. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825. https://doi.org/10.1158/0008-5472.CAN-05-4000.
  • Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF, Jr, Hampton GM. 2001. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61:7388–7393.
  • Urbanowicz-Kachnowicz I, Baghdassarian N, Nakache C, Gracia D, Mekki Y, Bryon PA, Ffrench M. 1999. ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells. Int J Cancer 82:98–104.
  • Wong YF, Cheung TH, Tsao GS, Lo KW, Yim SF, Wang VW, Heung MM, Chan SC, Chan LK, Ho TW, Wong KW, Li C, Guo Y, Chung TK, Smith DI. 2006. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 118:2461–2469. https://doi.org/10.1002/ijc.21660.
  • Shapira M, Ben-Izhak O, Bishara B, Futerman B, Minkov I, Krausz MM, Pagano M, Hershko DD. 2004. Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100:1615–1621. https://doi.org/10.1002/cncr.20172.
  • Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I, Hershko DD. 2005. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer 103:1336–1346. https://doi.org/10.1002/cncr.20917.
  • Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD. 2005. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res 7:R737–R744. https://doi.org/10.1186/bcr1278.
  • Liberal V, Martinsson-Ahlzen HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH, Reed SI. 2012. Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Proc Natl Acad Sci U S A 109:2754–2759. https://doi.org/10.1073/pnas.1102434108.
  • Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF. 2003. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426:87–91. https://doi.org/10.1038/nature02082.
  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ. 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459. https://doi.org/10.1101/gad.840500.
  • Zhao H, Piwnica-Worms H. 2001. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139. https://doi.org/10.1128/MCB.21.13.4129-4139.2001.
  • Morgan DO. 1995. Principles of CDK regulation. Nature 374:131–134. https://doi.org/10.1038/374131a0.
  • Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, Diffley JF. 2011. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol 21:1152–1157. https://doi.org/10.1016/j.cub.2011.05.057.
  • Kumagai A, Shevchenko A, Dunphy WG. 2011. Direct regulation of treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193:995–1007. https://doi.org/10.1083/jcb.201102003.
  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. 2007. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332. https://doi.org/10.1038/nature05465.
  • Zegerman P, Diffley JF. 2007. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285. https://doi.org/10.1038/nature05432.
  • Abbas T, Jha S, Sherman NE, Dutta A. 2007. Autocatalytic phosphorylation of CDK2 at the activating Thr160. Cell Cycle 6:843–852. https://doi.org/10.4161/cc.6.7.4000.
  • Watson MH, Bourne Y, Arvai AS, Hickey MJ, Santiago A, Bernstein SL, Tainer JA, Reed SI. 1996. A mutation in the human cyclin-dependent kinase interacting protein, CksHs2, interferes with cyclin-dependent kinase binding and biological function, but preserves protein structure and assembly. J Mol Biol 261:646–657.
  • Balog ER, Saetern OC, Finch W, Hoeft CO, Thai V, Harvey SL, Kellogg DR, Rubin SM. 2011. The structure of a monomeric mutant Cks protein reveals multiple functions for a conserved hinge-region proline. J Mol Biol 411:520–528. https://doi.org/10.1016/j.jmb.2011.05.045.
  • Kumagai A, Shevchenko A, Dunphy WG. 2010. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349–359. https://doi.org/10.1016/j.cell.2009.12.049.
  • Welburn JP, Tucker JA, Johnson T, Lindert L, Morgan M, Willis A, Noble ME, Endicott JA. 2007. How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282:3173–3181. https://doi.org/10.1074/jbc.M609151200.
  • Karnani N, Dutta A. 2011. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev 25:621–633. https://doi.org/10.1101/gad.2029711.
  • Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI. 2013. Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 33:3627–3643. https://doi.org/10.1128/MCB.00535-13.
  • Parge HE, Arvai AS, Murtari DJ, Reed SI, Tainer JA. 1993. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science 262:387–395. https://doi.org/10.1126/science.8211159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.