25
Views
11
CrossRef citations to date
0
Altmetric
Article

Activated Transcription Factor 3 in Association with Histone Deacetylase 6 Negatively Regulates MicroRNA 199a2 Transcription by Chromatin Remodeling and Reduces Endothelin-1 Expression

, , , , &
Pages 2838-2854 | Received 16 Jun 2016, Accepted 25 Aug 2016, Published online: 18 Mar 2023

REFERENCES

  • Dewerchin M, Carmeliet P. 2012. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2:a011056. http://dx.doi.org/10.1101/cshperspect.a011056.
  • De Falco S, Gigante B, Persico MG. 2002. Structure and function of placental growth factor. Trends Cardiovasc Med 12:241–246. http://dx.doi.org/10.1016/S1050-1738(02)00168-8.
  • Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. 2002. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840.
  • Weed S, Bastek JA, Anton L, Elovitz MA, Parry S, Srinivas SK. 2012. Examining the correlation between placental and serum placenta growth factor in preeclampsia. Am J Obstet Gynecol 207: 140.e1–e6. http://dx.doi.org/10.1016/j.ajog.2012.05.003.
  • Oura H, Bertoncini J, Velasco P, Brown LF, Carmeliet P, Detmar M. 2003. A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101:560–567. http://dx.doi.org/10.1182/blood-2002-05-1516.
  • Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart J-M, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert J-M, Collen D, Persico MG. 2001. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583. http://dx.doi.org/10.1038/87904.
  • Odorisio T, Schietroma C, Zaccaria ML, Cianfarani F, Tiveron C, Tatangelo L, Failla CM, Zambruno G. 2002. Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci 115:2559–2567.
  • Cianfarani F, Zambruno G, Brogelli L, Sera F, Lacal PM, Pesce M, Capogrossi MC, Failla CM, Napolitano M, Odorisio T. 2006. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am J Path 169:1167–1182. http://dx.doi.org/10.2353/ajpath.2006.051314.
  • De Falco S. 2012. The discovery of placenta growth factor and its biological activity. Exp Mol Med 44:1–9. http://dx.doi.org/10.3858/emm.2012.44.1.025.
  • Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C. 2003. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93:664–673. http://dx.doi.org/10.1161/01.RES.0000093984.48643.D7.
  • Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL. 2003. Cell type–specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081. http://dx.doi.org/10.1161/01.RES.0000102937.50486.1B.
  • Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P. 2003. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood 102:1506–1514. http://dx.doi.org/10.1182/blood-2002-11-3422.
  • Wang X, Mendelsohn L, Rogers H, Leitman S, Raghavachari N, Yang Y, Yau YY, Tallack M, Perkins A, Taylor JG, VI, Noguchi CT, Kato GJ. 2014. Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Kruppel-like factor. Blood 124:946–954. http://dx.doi.org/10.1182/blood-2013-11-539718.
  • Brittain JE, Hulkower B, Jones SK, Strayhorn D, De Castro L, Telen MJ, Orringer EP, Hinderliter A, Ataga KI. 2010. Placenta growth factor in sickle cell disease: association with hemolysis and inflammation. Blood 115:2014–2020. http://dx.doi.org/10.1182/blood-2009-04-217950.
  • Patel N, Sundaram N, Yang M, Madigan C, Kalra VK, Malik P. 2010. Placenta growth factor (PlGF), a novel inducer of plasminogen activator inhibitor-1 (PAI-1) in sickle cell disease (SCD). J Biol Chem 285:16713–16722. http://dx.doi.org/10.1074/jbc.M110.101691.
  • Sundaram N, Tailor A, Mendelsohn L, Wansapura J, Wang X, Higashimoto T, Pauciulo MW, Gottliebson W, Kalra VK, Nichols WC, Kato GJ, Malik P. 2010. High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension. Blood 116:109–112. http://dx.doi.org/10.1182/blood-2009-09-244830.
  • Patel N, Gonsalves CS, Malik P, Kalra VK. 2008. Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha. Blood 112:856–865. http://dx.doi.org/10.1182/blood-2007-12-130567.
  • Li C, Mpollo M, Gonsalves CS, Tahara SM, Malik P, Kalra VK. 2014. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J Biol Chem 289:36031–36047. http://dx.doi.org/10.1074/jbc.M114.600775.
  • Hai T, Wolford CC, Chang Y-S. 2010. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: Is modulation of inflammation a unifying component? Gene Expr 15:1–11. http://dx.doi.org/10.3727/105221610X12819686555015.
  • Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, Yin X, Chang Y, Zmuda EJ, Toole SA, Millar EK, Roller SL, Shapiro CL, Ostrowski MC, Sutherland RL, Hai T. 2013. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest 123:2893–2906. http://dx.doi.org/10.1172/JCI64410.
  • Kim JY, Hwang J-Y, Lee DY, Song EH, Park KJ, Kim GH, Jeong EA, Lee YJ, Go MJ, Kim DJ, Lee SS, Kim B-J, Song J, Roh GS, Gao B, Kim W-H. 2014. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo. J Biol Chem 289:27065–27079. http://dx.doi.org/10.1074/jbc.M114.585653.
  • Pászty C, Brion CM, Manci E, Witkowska HE, Stevens ME, Mohandas N, Rubin EM. 1997. Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278:876–878. http://dx.doi.org/10.1126/science.278.5339.876.
  • Fu L, Kilberg MS. 2013. Elevated cJUN expression and an ATF/CRE site within the ATF3 promoter contribute to activation of ATF3 transcription by the amino acid response. Physiol Genomics 45:127–137. http://dx.doi.org/10.1152/physiolgenomics.00160.2012.
  • Kang J, Ramu S, Lee S, Aguilar B, Ganesan SK, Yoo J, Kalra VK, Koh CJ, Hong YK. 2009. Phosphate-buffered saline-based nucleofection of primary endothelial cells. Anal Biochem 386:251–255. http://dx.doi.org/10.1016/j.ab.2008.12.021.
  • Li C, Gonsalves CS, Eiymo Mwa Mpollo M-S, Malik P, Tahara SM, Kalra VK. 2015. MicroRNA 648 targets ET-1 mRNA and is cotranscriptionally regulated with MICAL3 by PAX5. Mol Cell Biol 35:514–528. http://dx.doi.org/10.1128/MCB.01199-14.
  • Zhou Y, Yi T, Park S-S, Chadwick W, Shen R-F, Wu WW, Martin B, Maudsley S. 2011. Rapid and enhanced proteolytic digestion using electric-field-oriented enzyme reactor. J Proteomics 74:1030–1035. http://dx.doi.org/10.1016/j.jprot.2011.02.007.
  • Washburn MP, Wolters D, Yates JR. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247. http://dx.doi.org/10.1038/85686.
  • Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885. http://dx.doi.org/10.1101/gr.5533506.
  • Patel N, Gonsalves CS, Yang M, Malik P, Kalra VK. 2009. Placenta growth factor induces 5-lipoxygenase–activating protein to increase leukotriene formation in sickle cell disease. Blood 113:1129–1138. http://dx.doi.org/10.1182/blood-2008-07-169821.
  • Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S, Ichijo H, Kitajima S. 2000. Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 96:2140–2148.
  • Darlyuk-Saadon I, Weidenfeld-Baranboim K, Yokoyama KK, Hai T, Aronheim A. 2012. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter. Biochim Biophys Acta 1819:1142–1153. http://dx.doi.org/10.1016/j.bbagrm.2012.09.005.
  • Narlikar GJ, Fan H-Y, Kingston RE. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487. http://dx.doi.org/10.1016/S0092-8674(02)00654-2.
  • West AC, Johnstone RW. 2014. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. http://dx.doi.org/10.1172/JCI69738.
  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. 2003. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394. http://dx.doi.org/10.1073/pnas.0430973100.
  • de Zoeten EF, Wang L, Butler K, Beier UH, Akimova T, Sai H, Bradner JE, Mazitschek R, Kozikowski AP, Matthias P, Hancock WW. 2011. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol Cell Biol 31:2066–2078. http://dx.doi.org/10.1128/MCB.05155-11.
  • Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:1074–1080. http://dx.doi.org/10.1126/science.1063127.
  • Loebel DAF, Tsoi B, Wong N, Tam PPL. 2005. A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics 85:782–789. http://dx.doi.org/10.1016/j.ygeno.2005.02.001.
  • el Azzouzi H, Leptidis S, Dirkx E, Hoeks J, van Bree B, Brand K, McClellan EA, Poels E, Sluimer JC, van den Hoogenhof MM, Armand AS, Yin X, Langley S, Bourajjaj M, Olieslagers S, Krishnan J, Vooijs M, Kurihara H, Stubbs A, Pinto YM, Krek W, Mayr M, Costa Martins PA, Schrauwen P, De Windt LJ. 2013. The hypoxia-inducible microRNA Cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metabolism 18:341–354. http://dx.doi.org/10.1016/j.cmet.2013.08.009.
  • Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. 1999. ATF3 and stress responses. Gene Expr 7:321–335.
  • Lu D, Wolfgang CD, Hai T. 2006. Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481. http://dx.doi.org/10.1074/jbc.M509278200.
  • Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A. 2006. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178. http://dx.doi.org/10.1038/nature04768.
  • Filen S, Ylikoski E, Tripathi S, West A, Bjorkman M, Nystrom J, Ahlfors H, Coffey E, Rao KV, Rasool O, Lahesmaa R. 2010. Activating transcription factor 3 is a positive regulator of human IFNG gene expression. J Immunol 184:4990–4999. http://dx.doi.org/10.4049/jimmunol.0903106.
  • Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Bruck J, Teske A, Valtcheva N, Fuchs K, Kneilling M, Park J-H, Kim K-H, Kim K-W, Hoffmann P, Krenn C, Hai T, Ghoreschi K, Biedermann T, Rocken M. 2012. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18:128–134. http://dx.doi.org/10.1038/nm.2557.
  • Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T, Tsukahara T, Nakayama K, Miyamoto Y, Yasuda K, Matsuda J, Kamei Y, Kitajima S, Ogawa Y. 2009. Activating transcription factor 3 constitutes a negative feedback mechanism that attenuates saturated Fatty acid/toll-like receptor 4 signaling and macrophage activation in obese adipose tissue. Circ Res 105:25–32. http://dx.doi.org/10.1161/CIRCRESAHA.109.196261.
  • Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, Uhlirova M. 2012. Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol Cell Biol 32:3949–3962. http://dx.doi.org/10.1128/MCB.00429-12.
  • Xu YZ, Thuraisingam T, Marino R, Radzioch D. 2011. Recruitment of SWI/SNF complex is required for transcriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 Cells. J Biol Chem 286:12839–12849. http://dx.doi.org/10.1074/jbc.M110.185637.
  • Weidenfeld-Baranboim K, Hasin T, Darlyuk I, Heinrich R, Elhanani O, Pan J, Yokoyama KK, Aronheim A. 2009. The ubiquitously expressed bZIP inhibitor, JDP2, suppresses the transcription of its homologue immediate early gene counterpart, ATF3. Nucleic Acids Res 37:2194–2203. http://dx.doi.org/10.1093/nar/gkp083.
  • Maruyama K, Fukasaka M, Vandenbon A, Saitoh T, Kawasaki T, Kondo T, Yokoyama Kazunari K, Kidoya H, Takakura N, Standley D, Takeuchi O, Akira S. 2012. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation. Immunity 37:1024–1036. http://dx.doi.org/10.1016/j.immuni.2012.08.022.
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. http://dx.doi.org/10.1126/science.1175371.
  • Kaluza D, Kroll J, Gesierich S, Yao T-P, Boon RA, Hergenreider E, Tjwa M, Rössig L, Seto E, Augustin HG, Zeiher AM, Dimmeler S, Urbich C. 2011. Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 30:4142–4156. http://dx.doi.org/10.1038/emboj.2011.298.
  • Dallavalle S, Pisano C, Zunino F. 2012. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 84:756–765. http://dx.doi.org/10.1016/j.bcp.2012.06.014.
  • Gonsalves CS, Li C, Mpollo M-SEM, Pullarkat V, Malik P, Tahara SM, Kalra VK. 2015. Erythropoietin-mediated expression of placenta growth factor is regulated via activation of hypoxia-inducible factor-1α and posttranscriptionally by miR-214 in sickle cell disease. Biochem J 468:409–423. http://dx.doi.org/10.1042/BJ20141138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.