28
Views
38
CrossRef citations to date
0
Altmetric
Article

FoxA1 Binding Directs Chromatin Structure and the Functional Response of a Glucocorticoid Receptor-Regulated Promoter

, &
Pages 5413-5425 | Received 23 Mar 2009, Accepted 08 Aug 2009, Published online: 21 Mar 2023

REFERENCES

  • Astrand, C., S. Belikov, and O. Wrange. 2009. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. Exp. Cell Res. 315:2604–2615.
  • Badis, G., E. T. Chan, H. van Bakel, L. Pena-Castillo, D. Tillo, K. Tsui, C. D. Carlson, A. J. Gossett, M. J. Hasinoff, C. L. Warren, M. Gebbia, S. Talukder, A. Yang, S. Mnaimneh, D. Terterov, D. Coburn, A. Li Yeo, Z. X. Yeo, N. D. Clarke, J. D. Lieb, A. Z. Ansari, C. Nislow, and T. R. Hughes. 2008. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32:878–887.
  • Belikov, S., C. Astrand, P. H. Holmqvist, and O. Wrange. 2004. Chromatin-mediated restriction of nuclear factor 1/CTF binding in a repressed and hormone-activated promoter in vivo. Mol. Cell. Biol. 24:3036–3047.
  • Belikov, S., C. Astrand, and O. Wrange. 2007. Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo. Mol. Cell. Biol. 27:2398–2410.
  • Belikov, S., B. Gelius, G. Almouzni, and Ö. Wrange. 2000. Hormone activation induces nucleosome positioning in vivo. EMBO J. 19:1023–1033.
  • Belikov, S., B. Gelius, and O. Wrange. 2001. Hormone-induced nucleosome positioning in the MMTV promoter is reversible. EMBO J. 20:2802–2811.
  • Belikov, S., P. H. Holmqvist, C. Astrand, and O. Wrange. 2004. Nuclear factor 1 and octamer transcription factor 1 binding preset the chromatin structure of the mouse mammary tumor virus promoter for hormone induction. J. Biol. Chem. 279:49857–49867.
  • Berger, S. L. 2007. The complex language of chromatin regulation during transcription. Nature 447:407–412.
  • Cadepond, F., A. Ulmann, and E. E. Baulieu. 1997. RU486 (mifepristone): mechanisms of action and clinical uses. Annu. Rev. Med. 48:129–156.
  • Carroll, J. S., X. S. Liu, A. S. Brodsky, W. Li, C. A. Meyer, A. J. Szary, J. Eeckhoute, W. Shao, E. V. Hestermann, T. R. Geistlinger, E. A. Fox, P. A. Silver, and M. Brown. 2005. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43.
  • Christoffels, V. M., T. Grange, K. H. Kaestner, T. J. Cole, G. J. Darlington, C. M. Croniger, and W. H. Lamers. 1998. Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene. Mol. Cell. Biol. 18:6305–6315.
  • Cirillo, L. A., F. R. Lin, I. Cuesta, D. Friedman, M. Jarnik, and K. S. Zaret. 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9:279–289.
  • Cirillo, L. A., C. E. McPherson, P. Bossard, K. Stevens, S. Cherian, E. Y. Shim, K. L. Clark, S. K. Burley, and K. S. Zaret. 1998. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17:244–254.
  • Clark, K. L., E. D. Halay, E. Lai, and S. K. Burley. 1993. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420.
  • Costa, R. H., D. R. Grayson, and J. E. Darnell, Jr. 1989. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and α1-antitrypsin genes. Mol. Cell. Biol. 9:1415–1425.
  • Eeckhoute, J., J. S. Carroll, T. R. Geistlinger, M. I. Torres-Arzayus, and M. Brown. 2006. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20:2513–2526.
  • Friedman, J. R., and K. H. Kaestner. 2006. The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 63:2317–2328.
  • Giguere, V., S. M. Hollenberg, M. G. Rosenfeld, and R. M. Evans. 1986. Functional domains of the human glucocorticoid receptor. Cell 46:645–652.
  • Godowski, P. J., S. Rusconi, R. Miesfeld, and K. R. Yamamoto. 1987. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325:365–368.
  • Han, M., and M. Grunstein. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145.
  • Hertel, C. B., G. Langst, W. Horz, and P. Korber. 2005. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol. Cell. Biol. 25:10755–10767.
  • Hollenberg, S. M., V. Giguere, P. Segui, and R. M. Evans. 1987. Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 49:39–46.
  • Holmqvist, P. H., S. Belikov, K. S. Zaret, and O. Wrange. 2005. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Exp. Cell Res. 304:593–603.
  • Ioshikhes, I. P., I. Albert, S. J. Zanton, and B. F. Pugh. 2006. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38:1210–1215.
  • Ip, Y. T., D. Poon, D. Stone, D. K. Granner, and R. Chalkley. 1990. Interaction of a liver-specific factor with an enhancer 4.8 kilobases upstream of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 10:3770–3781.
  • Jia, L., B. P. Berman, U. Jariwala, X. Yan, J. P. Cogan, A. Walters, T. Chen, G. Buchanan, B. Frenkel, and G. A. Coetzee. 2008. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS ONE 3:e3645.
  • John, S., P. J. Sabo, T. A. Johnson, M. H. Sung, S. C. Biddie, S. L. Lightman, T. C. Voss, S. R. Davis, P. S. Meltzer, J. A. Stamatoyannopoulos, and G. L. Hager. 2008. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell 29:611–624.
  • Khorasanizadeh, S. 2004. The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272.
  • Kumar, R., and E. B. Thompson. 2005. Gene regulation by the glucocorticoid receptor: structure:function relationship. J. Steroid Biochem. Mol. Biol. 94:383–394.
  • Lai, E., V. R. Prezioso, E. Smith, O. Litvin, R. H. Costa, and J. E. Darnell, Jr. 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4:1427–1436.
  • Lemaigre, F. P., S. M. Durviaux, and G. G. Rousseau. 1993. Liver-specific factor binding to the liver promoter of a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J. Biol. Chem. 268:19896–19905.
  • Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260.
  • Lupien, M., J. Eeckhoute, C. A. Meyer, Q. Wang, Y. Zhang, W. Li, J. S. Carroll, X. S. Liu, and M. Brown. 2008. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970.
  • Perlmann, T., and Ö. Wrange. 1991. Inhibition of chromatin assembly in Xenopus oocytes correlates with derepression of the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11:5259–5265.
  • Richard-Foy, H., and G. L. Hager. 1987. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6:2321–2328.
  • Rigaud, G., J. Roux, R. Pictet, and T. Grange. 1991. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986.
  • Ronquist-Nii, Y., and P. O. Edlund. 2005. Determination of corticosteroids in tissue samples by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 37:341–350.
  • Rousseau, G. G., and J. P. Schmit. 1977. Structure-activity relationships for glucocorticoids-I. Determination of receptor binding and biological activity. J. Steroid Biochem. 8:911–919.
  • Roux, J., R. Pictet, and T. Grange. 1995. Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene. DNA Cell Biol. 14:385–396.
  • Schones, D. E., K. Cui, S. Cuddapah, T. Y. Roh, A. Barski, Z. Wang, G. Wei, and K. Zhao. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898.
  • Segal, E., Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore, J. P. Wang, and J. Widom. 2006. A genomic code for nucleosome positioning. Nature 442:772–778.
  • Segal, M. R. 2008. Re-cracking the nucleosome positioning code. Stat. Appl. Genet. Mol. Biol. 7:Article14.
  • Severne, Y., S. Wieland, W. Schaffner, and S. Rusconi. 1988. Metal binding ‘finger’ structures in the glucocorticoid receptor defined by site-directed mutagenesis. EMBO J. 7:2503–2508.
  • So, A. Y., C. Chaivorapol, E. C. Bolton, H. Li, and K. R. Yamamoto. 2007. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet. 3:e94.
  • Stafford, J. M., J. C. Wilkinson, J. M. Beechem, and D. K. Granner. 2001. Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J. Biol. Chem. 276:39885–39891.
  • Truss, M., J. Bartsch, A. Schulbert, R. J. G. Hache, and M. Beato. 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751.
  • Urnov, F. D., and A. P. Wolffe. 2001. A necessary good: nuclear hormone receptors and their chromatin templates. Mol. Endocrinol. 15:1–16.
  • Wu, C. 1980. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286:854–860.
  • Zaret, K. S., and K. R. Yamamoto. 1984. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38:29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.