23
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Long Noncoding RNA H19 Promotes Tumorigenesis of Multiple Myeloma by Activating BRD4 Signaling by Targeting MicroRNA 152-3p

, , & ORCID Icon
Article: e00382-19 | Received 15 Aug 2019, Accepted 02 Nov 2019, Published online: 03 Mar 2023

REFERENCE

  • Harding T, Baughn L, Kumar S, Van Ness B. 2019. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 33:863–883. https://doi.org/10.1038/s41375-018-0362-z.
  • Vélez R, Turesson I, Landgren O, Kristinsson SY, Cuzick J. 2016. Incidence of multiple myeloma in Great Britain, Sweden, and Malmö, Sweden: the impact of differences in case ascertainment on observed incidence trends. BMJ Open 6:e009584. https://doi.org/10.1136/bmjopen-2015-009584.
  • Leng S, Chen Y, Tsai W-Y, Bhutani D, Hillyer GC, Lim E, Accordino MK, Wright JD, Hershman DL, Lentzsch S, Neugut AI. 2019. Use of bisphosphonates in elderly patients with newly diagnosed multiple myeloma. J Natl Compr Canc Netw 17:22–28. https://doi.org/10.6004/jnccn.2018.7079.
  • Brioli A, Klaus M, Sayer H, Scholl S, Ernst T, Hilgendorf I, Scherag A, Yomade O, Schilling K, Hochhaus A, Mügge L-O, von Lilienfeld-Toal M. 2019. The risk of infections in multiple myeloma before and after the advent of novel agents: a 12-year survey. Ann Hematol 98:713–722. https://doi.org/10.1007/s00277-019-03621-1.
  • Chen D, Zhou D, Xu J, Zhou R, Ouyang J, Chen B. 2019. Prognostic value of 1q21 gain in multiple myeloma. Clin Lymphoma Myeloma Leuk 19:e159–e164. https://doi.org/10.1016/j.clml.2018.12.002.
  • Senín A, García-Pallarols F, Azaiz RB, Martínez-Serra L, Montesdeoca S, Román D, Ferraro M, Párraga I, Besses C, Abella E. 2019. Study of the frequency and reasons for discontinuation of different lines of treatment in patients with multiple myeloma. Ann Hematol 98:705–711. https://doi.org/10.1007/s00277-019-03601-5.
  • Lambert J-P, Picaud S, Fujisawa T, Hou H, Savitsky P, Uusküla-Reimand L, Gupta GD, Abdouni H, Lin Z-Y, Tucholska M, Knight JDR, Gonzalez-Badillo B, St-Denis N, Newman JA, Stucki M, Pelletier L, Bandeira N, Wilson MD, Filippakopoulos P, Gingras A-C. 2019. Interactome rewiring following pharmacological targeting of BET bromodomains. Mol Cell 73:621–638. https://doi.org/10.1016/j.molcel.2018.11.006.
  • Ren C, Zeng L, Zhou MM. 2016. Chapter fourteen–preparation, biochemical analysis, and structure determination of the bromodomain, an acetyl-lysine binding domain. Methods Enzymol 573:321–343. https://doi.org/10.1016/bs.mie.2016.01.018.
  • Ren W, Wang C, Wang Q, Zhao D, Zhao K, Sun D, Liu X, Han C, Hou J, Li X, Zhang Q, Cao X, Li N. 2017. Bromodomain protein Brd3 promotes Ifnb1 transcription via enhancing IRF3/p300 complex formation and recruitment to Ifnb1 promoter in macrophages. Sci Rep 7:39986. https://doi.org/10.1038/srep39986.
  • Hensel T, Giorgi C, Schmidt O, Calzada-Wack J, Neff F, Buch T, Niggli FK, Schäfer BW, Burdach S, Richter G. 2016. Targeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Oncotarget 7:1451–1463. https://doi.org/10.18632/oncotarget.6385.
  • Stubbs MC, Burn TC, Sparks R, Maduskuie T, Diamond S, Rupar M, Wen X, Volgina A, Zolotarjova N, Waeltz P, Favata M, Jalluri R, Liu H, Liu XM, Li J, Collins R, Falahatpisheh N, Polam P, DiMatteo D, Feldman P, Dostalik V, Thekkat P, Gardiner C, He X, Li Y, Covington M, Wynn R, Ruggeri B, Yeleswaram S, Xue C-B, Yao W, Combs AP, Huber R, Hollis G, Scherle P, Liu PCC. 2019. The novel bromodomain and extraterminal domain inhibitor INCB054329 induces vulnerabilities in myeloma cells that inform rational combination strategies. Clin Cancer Res 25:300–311. https://doi.org/10.1158/1078-0432.CCR-18-0098.
  • Schmidt J, Braggio E, Kortuem KM, Egan JB, Zhu YX, Xin CS, Tiedemann RE, Palmer SE, Garbitt VM, McCauley D, Kauffman M, Shacham S, Chesi M, Bergsagel PL, Stewart AK. 2013. Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia 27:2357–2365. https://doi.org/10.1038/leu.2013.172.
  • Xu YJ, Zhou R, Zong JF, Lin WS, Tong S, Guo QJ, Lin C, Lin SJ, Chen YX, Chen MR. 2019. Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-κB pathway. Cancer Lett 447:33–40. https://doi.org/10.1016/j.canlet.2019.01.022.
  • Bogedale K, Jagannathan V, Gerber V, Unger L. 2019. Differentially expressed miRNAs, including a large microRNA cluster on chromosome 24, are associated with equine sarcoid and squamous cell carcinoma. Vet Comp Oncol 17:155. https://doi.org/10.1111/vco.12458.
  • Jiang J, Chang W, Fu Y, Gao Y, Zhang S. 2019. SAV1, regulated by microRNA-21, suppresses tumor growth in colorectal cancer. Biochem Cell Biol 97:91–99. https://doi.org/10.1139/bcb-2018-0034.
  • Ramchandani D, Lee SK, Yomtoubian S, Han MS, Tung CH, Mittal V. 2019. Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Mol Cancer Ther 18:579–591. https://doi.org/10.1158/1535-7163.MCT-18-0702.
  • Wang X, Ha T, Liu L, Hu Y, Kao R, Kalbfleisch J, Williams D, Li C. 2018. TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell Death Differ 25:966–982. https://doi.org/10.1038/s41418-017-0036-9.
  • Lu Z-W, Du M-Y, Qian L-X, Zhang N, Gu J-J, Ding K, Wu J, Zhu H-M, He X, Yin L. 2018. MiR-152 functioning as a tumor suppressor that interacts with DNMT1 in nasopharyngeal carcinoma. Onco Targets Ther 11:1733. https://doi.org/10.2147/OTT.S154464.
  • Zhang W, Wang YE, Zhang Y, Leleu X, Reagan M, Zhang Y, Mishima Y, Glavey S, Manier S, Sacco A, Jiang B, Roccaro AM, Ghobrial IM. 2014. Global epigenetic regulation of microRNAs in multiple myeloma. PLoS One 9:e110973. https://doi.org/10.1371/journal.pone.0110973.
  • Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K. 2019. The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci 76:2059–2076. https://doi.org/10.1007/s00018-019-03018-3.
  • Zhang Y, Gao L, Ma S, Ma J, Wang Y, Li S, Ding Z. 2019. MALAT1-KTN1-EGFR regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ 26:2061–2073. https://doi.org/10.1038/s41418-019-0288-7.
  • Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X, Hao J, Li Z, Ni Y, Li X, Zhou F, Li Q, Wang F, Wang X, Si Y, Zhang P, Liu C, Bartolomei M, Tang F, Liu B, Yu J, Lan Y. 2019. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell 24:285–298. https://doi.org/10.1016/j.stem.2018.11.023.
  • Pan Y, Chen H, Shen X, Wang X, Ju S, Lu M, Cong H. 2018. Serum level of long noncoding RNA H19 as a diagnostic biomarker of multiple myeloma. Clin Chim Acta 480:199–205. https://doi.org/10.1016/j.cca.2018.02.019.
  • Mercurio A, Adriani G, Catalano A, Carocci A, Rao L, Lentini G, Cavalluzzi MM, Franchini C, Vacca A, Corbo F. 2017. A mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem 24:2736. https://doi.org/10.2174/0929867324666170601074646.
  • De BN, Menu E, Bertrand MJ, Favreau M, De BE, Maes K, De VK, Radwanska M, Samali A, Magez S. 2017. Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget 8:52016–52025. https://doi.org/10.18632/oncotarget.18152.
  • Dalia BL, Lau SK, Boutros PC, Fereshteh K, Igor J, Andrulis IL, Tsao MS, Penn LZ. 2006. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66:5330. https://doi.org/10.1158/0008-5472.CAN-06-0037.
  • Pan Y, Zhang Y, Liu W, Huang Y, Shen X, Jing R, Pu J, Wang X, Ju S, Cong H. 2019. LncRNA H19 overexpression induces bortezomib resistance in multiple myeloma by targeting MCL-1 via miR-29b-3p. Cell Death Dis 10:106. https://doi.org/10.1038/s41419-018-1219-0.
  • Sun Y, Pan J, Zhang N, Wei W, Yu S, Ai L. 2017. Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-κB pathway. Sci Rep 7:18079. https://doi.org/10.1038/s41598-017-18056-9.
  • Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. 2016. AB144. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol 37:263–270. https://doi.org/10.21037/tau.2016.s144.
  • Liu G, Xiang T, Wu QF, Wang WX. 2016. Long noncoding RNA H19-derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells. Oncol Res 23:99–107. https://doi.org/10.3727/096504015X14496932933575.
  • Zhang J, Liu CY, Wan Y, Peng L, Li WF, Qiu JX. 2016. Long non-coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring. Oncol Lett 12:2835. https://doi.org/10.3892/ol.2016.4931.
  • Xu Y, Chen B, George SK, Liu B. 2015. Downregulation of microRNA-152 contributes to high expression of DKK1 in multiple myeloma. RNA Biol 12:1314–1322. https://doi.org/10.1080/15476286.2015.1094600.
  • Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S. 2017. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res 36:100. https://doi.org/10.1186/s13046-017-0567-4.
  • He ZY, Wei TH, Zhang PH, Zhou J, Huang XY. 2019. Long noncoding RNA-antisense noncoding RNA in the INK4 locus accelerates wound healing in diabetes by promoting lymphangiogenesis via regulating miR-181a/Prox1 axis. J Cell Physiol 234:4627–4640. https://doi.org/10.1002/jcp.27260.
  • Chen DL, Lu YX, Zhang JX, Wei XL, Wang F, Zeng ZL, Pan ZZ, Yuan YF, Wang FH, Pelicano H, Chiao PJ, Huang P, Xie D, Li YH, Ju HQ, Xu RH. 2017. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics 7:4836–4849. https://doi.org/10.7150/thno.20942.
  • Ding J, Yeh CR, Sun Y, Lin C, Chou J, Ou Z, Chang C, Qi J, Yeh S. 2018. Estrogen receptor beta promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 37:5037–5053. https://doi.org/10.1038/s41388-018-0175-6.
  • Cazalla D, Yario T, Steitz JA, Steitz J. 2010. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566. https://doi.org/10.1126/science.1187197.
  • White ME, Fenger JM, Carson WE. 2019. Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 337:48. https://doi.org/10.1016/j.cellimm.2019.02.001.
  • Guo NH, Zheng JF, Zi FM, Cheng J. 2019. I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targeting BRD4 in multiple myeloma. Biosci Rep 39:BSR20181245. https://doi.org/10.1042/BSR20181245.
  • Xiang T, Bai JY, She C, Yu DJ, Zhou XZ, Zhao TL. 2018. Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma. Cell Signal 42:106–113. https://doi.org/10.1016/j.cellsig.2017.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.