18
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Upregulation of MicroRNA 18b Contributes to the Development of Colorectal Cancer by Inhibiting CDKN2B

, , , , , , & show all
Article: e00391-17 | Received 28 Jul 2017, Accepted 03 Aug 2017, Published online: 18 Mar 2023

REFERENCES

  • Amin M, Lockhart AC. 2015. The potential role of immunotherapy to treat colorectal cancer. Expert Opin Investig Drugs 24:329–344. https://doi.org/10.1517/13543784.2015.985376.
  • Brenner H, Kloor M, Pox CP. 2014. Colorectal cancer. Lancet 383:1490–1502. https://doi.org/10.1016/S0140-6736(13)61649-9.
  • Macfarlane LA, Murphy PR. 2010. MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561. https://doi.org/10.2174/138920210793175895.
  • Okugawa Y, Toiyama Y, Goel A. 2014. An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 14:999–1021. https://doi.org/10.1586/14737159.2014.946907.
  • Mendell JT. 2008. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222. https://doi.org/10.1016/j.cell.2008.04.001.
  • Murakami Y, Tamori A, Itami S, Tanahashi T, Toyoda H, Tanaka M, Wu W, Brojigin N, Kaneoka Y, Maeda A, Kumada T, Kawada N, Kubo S, Kuroda M. 2013. The expression level of miR-18b in hepatocellular carcinoma is associated with the grade of malignancy and prognosis. BMC Cancer 13:99. https://doi.org/10.1186/1471-2407-13-99.
  • Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y. 2009. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657. https://doi.org/10.1111/j.1440-1746.2008.05666.x.
  • Yu X, Zhen Y, Yang H, Wang H, Zhou Y, Wang E, Marincola FM, Mai C, Chen Y, Wei H, Song Y, Lyu X, Ye Y, Cai L, Wu Q, Zhao M, Hua S, Fu Q, Zhang Y, Yao K, Liu Z, Li X, Fang W. 2013. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma. Cell Death Dis 4:e634. https://doi.org/10.1038/cddis.2013.153.
  • Fonseca-Sanchez MA, Perez-Plasencia C, Fernandez-Retana J, Arechaga-Ocampo E, Marchat LA, Rodriguez-Cuevas S, Bautista-Pina V, Arellano-Anaya ZE, Flores-Perez A, Diaz-Chavez J, Lopez-Camarillo C. 2013. microRNA-18b is upregulated in breast cancer and modulates genes involved in cell migration. Oncol Rep 30:2399–2410. https://doi.org/10.3892/or.2013.2691.
  • Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G, An HJ. 2010. Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology 57:734–743. https://doi.org/10.1111/j.1365-2559.2010.03686.x.
  • Dacic S, Kelly L, Shuai Y, Nikiforova MN. 2010. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol 23:1577–1582. https://doi.org/10.1038/modpathol.2010.152.
  • Cookson VJ, Bentley MA, Hogan BV, Horgan K, Hayward BE, Hazelwood LD, Hughes TA. 2012. Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell Oncol 35:301–308. https://doi.org/10.1007/s13402-012-0089-1.
  • Azizian A, Kramer F, Jo P, Wolff HA, Beissbarth T, Skarupke R, Bernhardt M, Grade M, Ghadimi BM, Gaedcke J. 2015. Preoperative prediction of lymph node status by circulating mir-18b and mir-20a during chemoradiotherapy in patients with rectal cancer. World J Surg 39:2329–2335. https://doi.org/10.1007/s00268-015-3083-8.
  • Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafa R, Xiao L, Zhang X, Vannini I, Fanini F, Fabbri M, Lanza G, Reis RM, Zweidler-McKay PA, Calin GA. 2012. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 142:886–896. https://doi.org/10.1053/j.gastro.2011.12.047.
  • Qu LL, He L, Zhao X, Xu W. 2015. Downregulation of miR-518a-3p activates the NIK-dependent NF-kappaB pathway in colorectal cancer. Int J Mol Med 35:1266–1272. https://doi.org/10.3892/ijmm.2015.2145.
  • Ortega S, Malumbres M, Barbacid M. 2002. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602:73–87.
  • Birt DF, Phillips GJ. 2014. Diet, genes, and microbes: complexities of colon cancer prevention. Toxicol Pathol 42:182–188. https://doi.org/10.1177/0192623313506791.
  • Yin Y, Song M, Gu B, Qi X, Hu Y, Feng Y, Liu H, Zhou L, Bian Z, Zhang J, Zuo X, Huang Z. 2016. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene 578:177–184. https://doi.org/10.1016/j.gene.2015.12.015.
  • Basu RK, Wong HR, Krawczeski CD, Wheeler DS, Manning PB, Chawla LS, Devarajan P, Goldstein SL. 2014. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol 64:2753–2762. https://doi.org/10.1016/j.jacc.2014.09.066.
  • Dar AA, Majid S, Rittsteuer C, de Semir D, Bezrookove V, Tong S, Nosrati M, Sagebiel R, Miller JR, III, Kashani-Sabet M. 2013. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 105:433–442. https://doi.org/10.1093/jnci/djt003.
  • Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agro E, Levine AJ, Melino G, Bernardini S, Candi E. 2013. DNA methylation silences miR-132 in prostate cancer. Oncogene 32:127–134. https://doi.org/10.1038/onc.2012.14.
  • Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, Chen CM. 2016. miR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 73:41–52. https://doi.org/10.1016/j.biocel.2016.02.002.
  • Yoshimoto N, Toyama T, Takahashi S, Sugiura H, Endo Y, Iwasa M, Fujii Y, Yamashita H. 2011. Distinct expressions of microRNAs that directly target estrogen receptor alpha in human breast cancer. Breast Cancer Res Treat 130:331–339. https://doi.org/10.1007/s10549-011-1672-2.
  • Otaegui D, Baranzini SE, Armananzas R, Calvo B, Munoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Trivino T, Asensio A, Olaskoaga J, de Munain AL. 2009. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4:e6309. https://doi.org/10.1371/journal.pone.0006309.
  • Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ. 2007. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141. https://doi.org/10.1016/j.yjmcc.2007.04.004.
  • Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J, Berns A. 2007. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448:943–946. https://doi.org/10.1038/nature06084.
  • Li J, Knobloch TJ, Poi MJ, Zhang Z, Davis AT, Muscarella P, Weghorst CM. 2014. Genetic alterations of RD(INK4/ARF) enhancer in human cancer cells. Mol Carcinog 53:211–218. https://doi.org/10.1002/mc.21965.
  • do Nascimento Borges B, Burbano RM, Harada ML. 2013. Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population. Tumour Biol 34:2127–2133. https://doi.org/10.1007/s13277-013-0742-y.
  • Li J, Bi L, Lin Y, Lu Z, Hou G. 2014. Clinicopathological significance and potential drug target of p15INK4B in multiple myeloma. Drug Des Devel Ther 8:2129–2136. https://doi.org/10.2147/DDDT.S71088.
  • Camacho CV, Mukherjee B, McEllin B, Ding LH, Hu B, Habib AA, Xie XJ, Nirodi CS, Saha D, Story MD, Balajee AS, Bachoo RM, Boothman DA, Burma S. 2010. Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks. Carcinogenesis 31:1889–1896. https://doi.org/10.1093/carcin/bgq153.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016.
  • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. https://doi.org/10.1093/bioinformatics/btp120.
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.