68
Views
49
CrossRef citations to date
0
Altmetric
Article

Regulation of the Death-Associated Protein Kinase 1 Expression and Autophagy via ATF6 Requires Apoptosis Signal-Regulating Kinase 1

, , , , &
Pages 4033-4048 | Received 21 Mar 2014, Accepted 07 Aug 2014, Published online: 20 Mar 2023

REFERENCES

  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227–264. http://dx.doi.org/10.1146/annurev.biochem.67.1.227.
  • Li H, Gade P, Xiao W, Kalvakolanu DV. 2007. The interferon signaling network and transcription factor C/EBP-beta. Cell. Mol. Immunol. 4:407–418. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782719/.
  • Gade P, Roy SK, Li H, Nallar SC, Kalvakolanu DV. 2008. Critical role for transcription factor C/EBP-beta in regulating the expression of death-associated protein kinase 1. Mol. Cell. Biol. 28:2528–2548. http://dx.doi.org/10.1128/MCB.00784-07.
  • Roy SK, Wachira SJ, Weihua X, Hu J, Kalvakolanu DV. 2000. CCAAT/enhancer-binding protein-beta regulates interferon-induced transcription through a novel element. J. Biol. Chem. 275:12626–12632. http://dx.doi.org/10.1074/jbc.275.17.12626.
  • Bialik S, Kimchi A. 2006. The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75:189–210. http://dx.doi.org/10.1146/annurev.biochem.75.103004.142615.
  • Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K, Kalvakolanu DV. 2012. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. U. S. A. 109:10316–10321. http://dx.doi.org/10.1073/pnas.1119273109.
  • Rutkowski DT, Kaufman RJ. 2004. A trip to the ER: coping with stress. Trends Cell. Biol. 14:20–28. http://dx.doi.org/10.1016/j.tcb.2003.11.001.
  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K. 1999. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10:3787–3799. http://dx.doi.org/10.1091/mbc.10.11.3787.
  • Shen J, Chen X, Hendershot L, Prywes R. 2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3:99–111. http://dx.doi.org/10.1016/S1534-5807(02)00203-4.
  • Shen J, Prywes R. 2005. ER stress signaling by regulated proteolysis of ATF6. Methods 35:382–389. http://dx.doi.org/10.1016/j.ymeth.2004.10.011.
  • Matsukawa J, Matsuzawa A, Takeda K, Ichijo H. 2004. The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. 136:261–265. http://dx.doi.org/10.1093/jb/mvh134.
  • Nagai H, Noguchi T, Takeda K, Ichijo H. 2007. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J. Biochem. Mol. Biol. 40:1–6. http://dx.doi.org/10.5483/BMBRep.2007.40.1.001.
  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H. 2001. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2:222–228. http://dx.doi.org/10.1093/embo-reports/kve046.
  • Gade P, Singh AK, Roy SK, Reddy SP, Kalvakolanu DV. 2009. Down-regulation of the transcriptional mediator subunit Med1 contributes to the loss of expression of metastasis-associated dapk1 in human cancers and cancer cells. Int. J. Cancer 125:1566–1574. http://dx.doi.org/10.1002/ijc.24493.
  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17:2596–2606. http://dx.doi.org/10.1093/emboj/17.9.2596.
  • Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16:1247–1255.
  • Sakamoto S, Taura F, Tsuchihashi R, Putalun W, Kinjo J, Tanaka H, Morimoto S. 2010. Expression, purification, and characterization of anti-plumbagin single-chain variable fragment antibody in Sf9 insect cell. Hybridoma 29:481–488. http://dx.doi.org/10.1089/hyb.2010.0052.
  • Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K. 2010. REAP: a two minute cell fractionation method. BMC Res. Notes 3:294. http://dx.doi.org/10.1186/1756-0500-3-294.
  • Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS. 2008. Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur. J. Immunol. 38:1574–1584. http://dx.doi.org/10.1002/eji.200838141.
  • Darling NJ, Cook SJ. 2014. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta 1843:2150–2163. http://dx.doi.org/10.1016/j.bbamcr.2014.01.009.
  • Gozuacik D, Kimchi A. 2006. DAPk protein family and cancer. Autophagy 2:74–79.
  • Lee YR, Yuan WC, Ho HC, Chen CH, Shih HM, Chen RH. 2010. The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J. 29:1748–1761. http://dx.doi.org/10.1038/emboj.2010.62.
  • Zalckvar E, Berissi H, Eisenstein M, Kimchi A. 2009. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5:720–722. http://dx.doi.org/10.4161/auto.5.5.8625.
  • Mor I, Carlessi R, Ast T, Feinstein E, Kimchi A. 2012. Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene 31:683–693. http://dx.doi.org/10.1038/onc.2011.264.
  • Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. 2002. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid. Redox Signal. 4:415–425. http://dx.doi.org/10.1089/15230860260196218.
  • Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H. 2002. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16:1345–1355. http://dx.doi.org/10.1101/gad.992302.
  • Matsuda T, Nagano T, Takemura M, Baba A. 2006. Topics on the Na+/Ca2+ exchanger: responses of Na+/Ca2+ exchanger to interferon-gamma and nitric oxide in cultured microglia. J. Pharmacol. Sci. 102:22–26. http://dx.doi.org/10.1254/jphs.FMJ06002X4.
  • Watanabe Y, Suzuki O, Haruyama T, Akaike T. 2003. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J. Cell. Biochem. 89:244–253. http://dx.doi.org/10.1002/jcb.10501.
  • Roy SK, Hu J, Meng Q, Xia Y, Shapiro PS, Reddy SP, Platanias LC, Lindner DJ, Johnson PF, Pritchard C, Pages G, Pouyssegur J, Kalvakolanu DV. 2002. MEKK1 plays a critical role in activating the transcription factor C/EBP-beta-dependent gene expression in response to IFN-gamma. Proc. Natl. Acad. Sci. U. S. A. 99:7945–7950. http://dx.doi.org/10.1073/pnas.122075799.
  • Ma Y, Brewer JW, Diehl JA, Hendershot LM. 2002. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318:1351–1365. http://dx.doi.org/10.1016/S0022-2836(02)00234-6.
  • Ron D, Habener JF. 1992. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6:439–453. http://dx.doi.org/10.1101/gad.6.3.439.
  • Thuerauf DJ, Arnold ND, Zechner D, Hanford DS, DeMartin KM, McDonough PM, Prywes R, Glembotski CC. 1998. p38 mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J. Biol. Chem. 273:20636–20643.
  • Sen GC, Sarkar SN. 2007. The interferon-stimulated genes: targets of direct signaling by interferons, double-stranded RNA, and viruses. Curr. Top. Microbiol. Immunol. 316:233–250.
  • Boya P, Reggiori F, Codogno P. 2013. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15:713–720. http://dx.doi.org/10.1038/ncb2788.
  • Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323–335. http://dx.doi.org/10.1038/nature09782.
  • Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, Hutt J, Lyons CR, Dobos KM, Deretic V. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. U. S. A. 109:E3168–E3176. http://dx.doi.org/10.1073/pnas.1210500109.
  • Subramani S, Malhotra V. 2013. Non-autophagic roles of autophagy-related proteins. EMBO Rep. 14:143–151. http://dx.doi.org/10.1038/embor.2012.220.
  • Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp TR. 2008. DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J. Biol. Chem. 283:9999–10014. http://dx.doi.org/10.1074/jbc.M706040200.
  • Shiizaki S, Naguro I, Ichijo H. 2013. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv. Biol. Regul. 53:135–144. http://dx.doi.org/10.1016/j.jbior.2012.09.006.
  • Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. 2007. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol. Cell. Biol. 27:8152–8163. http://dx.doi.org/10.1128/MCB.00227-07.
  • Deiss LP, Kimchi A. 1991. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252:117–120. http://dx.doi.org/10.1126/science.1901424.
  • Nagai H, Noguchi T, Homma K, Katagiri K, Takeda K, Matsuzawa A, Ichijo H. 2009. Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Mol. Cell 36:805–818. http://dx.doi.org/10.1016/j.molcel.2009.10.016.
  • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A. 2009. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-X(L) and induction of autophagy. EMBO Rep. 10:285–292. http://dx.doi.org/10.1038/embor.2008.246.
  • Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM. 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626. http://dx.doi.org/10.1126/science.1073759.
  • Shi CS, Kehrl JH. 2008. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283:33175–33182. http://dx.doi.org/10.1074/jbc.M804478200.
  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939. http://dx.doi.org/10.1016/j.cell.2005.07.002.
  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676. http://dx.doi.org/10.1038/45257.
  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Investig. 112:1809–1820. http://dx.doi.org/10.1172/JCI20039.
  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U. S. A. 100:15077–15082. http://dx.doi.org/10.1073/pnas.2436255100.
  • Iriyama T, Takeda K, Nakamura H, Morimoto Y, Kuroiwa T, Mizukami J, Umeda T, Noguchi T, Naguro I, Nishitoh H, Saegusa K, Tobiume K, Homma T, Shimada Y, Tsuda H, Aiko S, Imoto I, Inazawa J, Chida K, Kamei Y, Kozuma S, Taketani Y, Matsuzawa A, Ichijo H. 2009. ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO J. 28:843–853. http://dx.doi.org/10.1038/emboj.2009.32.
  • Hayakawa Y, Hirata Y, Nakagawa H, Sakamoto K, Hikiba Y, Kinoshita H, Nakata W, Takahashi R, Tateishi K, Tada M, Akanuma M, Yoshida H, Takeda K, Ichijo H, Omata M, Maeda S, Koike K. 2011. Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proc. Natl. Acad. Sci. U. S. A. 108:780–785. http://dx.doi.org/10.1073/pnas.1011418108.
  • Nakagawa H, Hirata Y, Takeda K, Hayakawa Y, Sato T, Kinoshita H, Sakamoto K, Nakata W, Hikiba Y, Omata M, Yoshida H, Koike K, Ichijo H, Maeda S. 2011. Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology 54:185–195. http://dx.doi.org/10.1002/hep.24357.
  • Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang N, Ellis JJ, Reid J, Zismann V, Tyagi S, Muzny D, Newsham I, Wu Y, Palmer JM, Pollak T, Youngkin D, Brooks BR, Lanagan C, Schmidt CW, Kobe B, MacKeigan JP, Yin H, Brown KM, Gibbs R, Trent J, Hayward NK. 2012. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat. Genet. 44:165–169. http://dx.doi.org/10.1038/ng.1041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.