57
Views
18
CrossRef citations to date
0
Altmetric
Article

KAP-1 Promotes Resection of Broken DNA Ends Not Protected by γ-H2AX and 53BP1 in G1-Phase Lymphocytes

, , , , , , , , , , , , & show all
Pages 2811-2821 | Received 01 Apr 2014, Accepted 12 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211. http://dx.doi.org/10.1146/annurev.biochem.052308.093131.
  • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204. http://dx.doi.org/10.1016/j.molcel.2010.09.019.
  • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247–271. http://dx.doi.org/10.1146/annurev-genet-110410-132435.
  • Huertas P. 2010. DNA resection in eukaryotes: deciding how to fix the break. Nat. Struct. Mol. Biol. 17:11–16. http://dx.doi.org/10.1038/nsmb.1710.
  • Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 302:575–581. http://dx.doi.org/10.1038/302575a0.
  • Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495–527. http://dx.doi.org/10.1146/annurev.immunol.18.1.495.
  • Helmink BA, Sleckman BP. 2012. The response to and repair of RAG-mediated DNA double-strand breaks. Annu. Rev. Immunol. 30:175–202. http://dx.doi.org/10.1146/annurev-immunol-030409-101320.
  • Rooney S, Chaudhuri J, Alt FW. 2004. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200:115–131. http://dx.doi.org/10.1111/j.0105-2896.2004.00165.x.
  • Zha S, Guo C, Boboila C, Oksenych V, Cheng HL, Zhang Y, Wesemann DR, Yuen G, Patel H, Goff PH, Dubois RL, Alt FW. 2011. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 469:250–254. http://dx.doi.org/10.1038/nature09604.
  • Li G, Alt FW, Cheng HL, Brush JW, Goff PH, Murphy MM, Franco S, Zhang Y, Zha S. 2008. Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination. Mol. Cell 31:631–640. http://dx.doi.org/10.1016/j.molcel.2008.07.017.
  • Helmink BA, Tubbs AT, Dorsett Y, Bednarski JJ, Walker LM, Feng Z, Sharma GG, McKinnon PJ, Zhang J, Bassing CH, Sleckman BP. 2011. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469:245–249. http://dx.doi.org/10.1038/nature09585.
  • Desiderio S, Lin WC, Li Z. 1996. The cell cycle and V(D)J recombination. Curr. Top. Microbiol. Immunol. 217:45–59.
  • Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA, Yang-Iott KS, Sleckman BP, Bassing CH. 2009. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol. Cell 34:298–310. http://dx.doi.org/10.1016/j.molcel.2009.04.012.
  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. 2006. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8:870–876. http://dx.doi.org/10.1038/ncb1446.
  • Goodarzi AA, Jeggo P, Lobrich M. 2010. The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair (Amst.) 9:1273–1282. http://dx.doi.org/10.1016/j.dnarep.2010.09.013.
  • Iyengar S, Farnham PJ. 2011. KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286:26267–26276. http://dx.doi.org/10.1074/jbc.R111.252569.
  • Hatakeyama S. 2011. TRIM proteins and cancer. Nat. Rev. Cancer 11:792–804. http://dx.doi.org/10.1038/nrc3139.
  • Ozato K, Shin DM, Chang TH, Morse HCIII. 2008. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8:849–860. http://dx.doi.org/10.1038/nri2413.
  • Nisole S, Stoye JP, Saib A. 2005. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 3:799–808. http://dx.doi.org/10.1038/nrmicro1248.
  • Han K, Lou DI, Sawyer SL. 2011. Identification of a genomic reservoir for new TRIM genes in primate genomes. PLoS Genet. 7:e1002388. http://dx.doi.org/10.1371/journal.pgen.1002388.
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA. 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31:167–177. http://dx.doi.org/10.1016/j.molcel.2008.05.017.
  • Goodarzi AA, Kurka T, Jeggo PA. 2011. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat. Struct. Mol. Biol. 18:831–839. http://dx.doi.org/10.1038/nsmb.2077.
  • Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA, Goodarzi AA. 2010. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat. Cell Biol. 12:177–184. http://dx.doi.org/10.1038/ncb2017.
  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A. 2003. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5:675–679. http://dx.doi.org/10.1038/ncb1004.
  • Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT, Kruhlak MJ, Callen E, Livak F, Nussenzweig MC, Sleckman BP, Nussenzweig A. 2008. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456:529–533. http://dx.doi.org/10.1038/nature07476.
  • Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254. http://dx.doi.org/10.1016/j.cell.2010.03.012.
  • Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC. 2010. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 207:855–865. http://dx.doi.org/10.1084/jem.20100244.
  • Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 2013. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339:700–704. http://dx.doi.org/10.1126/science.1231573.
  • Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP. 2006. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442:466–470. http://dx.doi.org/10.1038/nature04866.
  • Lee BS, Gapud EJ, Zhang S, Dorsett Y, Bredemeyer A, George R, Callen E, Daniel JA, Osipovich O, Oltz EM, Bassing CH, Nussenzweig A, Lees-Miller S, Hammel M, Chen BP, Sleckman BP. 2013. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination. Mol. Cell. Biol. 33:3568–3579. http://dx.doi.org/10.1128/MCB.00308-13.
  • Chan EA, Teng G, Corbett E, Choudhury KR, Bassing CH, Schatz DG, Krangel MS. 2013. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc. Natl. Acad. Sci. U. S. A. 110:E4628–E4637. http://dx.doi.org/10.1073/pnas.1310846110.
  • Lee DH, Goodarzi AA, Adelmant GO, Pan Y, Jeggo PA, Marto JA, Chowdhury D. 2012. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 31:2403–2415. http://dx.doi.org/10.1038/emboj.2012.86.
  • Ishida T, Kinoshita K. 2007. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 35:W460–W464. http://dx.doi.org/10.1093/nar/gkm363.
  • Forment JV, Walker RV, Jackson SP. 2012. A high-throughput, flow cytometry-based method to quantify DNA-end resection in mammalian cells. Cytometry A 81:922–928. http://dx.doi.org/10.1002/cyto.a.22155.
  • Bredemeyer AL, Helmink BA, Innes CL, Calderon B, McGinnis LM, Mahowald GK, Gapud EJ, Walker LM, Collins JB, Weaver BK, Mandik-Nayak L, Schreiber RD, Allen PM, May MJ, Paules RS, Bassing CH, Sleckman BP. 2008. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature 456:819–823. http://dx.doi.org/10.1038/nature07392.
  • Iyengar S, Ivanov AV, Jin VX, Rauscher FJIII, Farnham PJ. 2011. Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. 31:1833–1847. http://dx.doi.org/10.1128/MCB.01331-10.
  • Cheng S, Cetinkaya M, Grater F. 2010. How sequence determines elasticity of disordered proteins. Biophys. J. 99:3863–3869. http://dx.doi.org/10.1016/j.bpj.2010.10.011.
  • Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, Alt FW, Scully R. 2004. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16:1017–1025. http://dx.doi.org/10.1016/j.molcel.2004.12.007.
  • Bassing CH, Swat W, Alt FW. 2002. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109(Suppl):S45–S55. http://dx.doi.org/10.1016/S0092-8674(02)00675-X.
  • Mayer BJ. 2001. SH3 domains: complexity in moderation. J. Cell Sci. 114:1253–1263. http://jcs.biologists.org/content/114/7/1253.long.
  • Das RK, Mittal A, Pappu RV. 2013. How is functional specificity achieved through disordered regions of proteins? Bioessays 35:17–22. http://dx.doi.org/10.1002/bies.201200115.
  • Strehlow KG, Robertson AD, Baldwin RL. 1991. Proline for alanine substitutions in the C-peptide helix of ribonuclease A. Biochemistry 30:5810–5814. http://dx.doi.org/10.1021/bi00237a026.
  • Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A. 2011. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9:484–495. http://dx.doi.org/10.1016/j.chom.2011.05.004.
  • Demogines A, East AM, Lee JH, Grossman SR, Sabeti PC, Paull TT, Sawyer SL. 2010. Ancient and recent adaptive evolution of primate non-homologous end joining genes. PLoS Genet. 6:e1001169. http://dx.doi.org/10.1371/journal.pgen.1001169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.